精英家教網 > 高中數學 > 題目詳情
已知定義域為R的偶函數y=f(x)在[0,+∞)上單調遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式,其中k∈(-1,1).
【答案】分析:(1)由題意知對任意x∈R,f(x)>0,而對任意m,n∈[0,+∞),都有f(mn)=[f(m)]n,令m=n=0可求出f(0)的值,令m=1,n=2,可得[f(1)]2=4,求出f(1)=2,根據偶函數可求出f(-1)的值;
(2),然后根據f(x)為偶函數,且在[0,+∞)上單調遞增,則,轉化成(k2-1)x2+4kx≥0,討論二次項系數可求出所求.
解答:解:(1)由題意知對任意x∈R,f(x)>0,
又對任意m,n∈[0,+∞),都有f(mn)=[f(m)]n
則令m=n=0則f(0)=[f(0)]=1,…(2分)
令m=1,n=2,可得f(2)=f(1×2)=[f(1)]2=4,
∴f(1)=2,根據偶函數的性質可知f(-1)=2.…(6分)
(2)…(9分)
∵f(x)為偶函數,且在[0,+∞)上單調遞增,∴,
即(k2-1)x2+4kx≥0…(11分)
當-1<k<0時,原不等式的解集為;
當k=0時,原不等式的解集為{0};
當0<k<1時,原不等式的解集為.…(14分)
點評:本題主要考查了函數的奇偶性,以及函數的單調性,同時考查了轉化與分類討論的數學思想和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義域為R的偶函數y=f(x)在[0,+∞)上單調遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數y=f(x)對任意x∈R都滿足條件f(x)+f(4-x)=0與f(x+2)-f(x-2)=0,則對函數y=f(x),
下列結論中必定正確的是
①③
①③
.(填上所有正確結論的序號)
①y=f(x)是奇函數;                ②y=f(x)是偶函數;
③y=f(x)是周期函數;              ④y=f(x)的圖象是軸對稱的.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為R的偶函數y=f(x)在[0,+∞)上單調遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式數學公式,其中k∈(-1,1).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定義域為R的偶函數y=f(x)在[0,+∞)上單調遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视