【題目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數,且|logaφ|<1}的子集個數為4,則a的取值范圍為 .
【答案】( )∪(
)
【解析】解:∵集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數,
∴f(0)=sin(﹣2φπ)+cos(﹣2φπ)=cos2φπ﹣sin2φπ=0,
∴cos2φπ=sin2φπ,即tan2φπ=1,∴2φπ=kπ+ ,則φ=
+
,k∈Z.
驗證φ= +
,k∈Z時,f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]
=sin[(x﹣k﹣ )π]+cos[(x﹣k﹣
)π]=sin(πx﹣
)+cos(
)=
為奇函數.
∴φ= +
,k∈Z.
∵集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數,且|logaφ|<1}的子集個數為4,
∴滿足|logaφ|<1的φ有2個,即滿足﹣1<logaφ<1的φ有2個.
分別取k=0,1,2,3,得到φ= ,
,
,
,
若0<a<1,可得a∈( )時,滿足﹣1<logaφ<1的φ有2個;
若a>1,可得a∈( )時,滿足﹣1<logaφ<1的φ有2個.
則a的取值范圍為( )∪(
).
所以答案是:( )∪(
).
【考點精析】通過靈活運用函數奇偶性的性質,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇即可以解答此題.
科目:高中數學 來源: 題型:
【題目】“神州”號飛船返回艙順利到達地球后,為了及時將航天員救出,地面指揮中心在返回艙預計到達的區域安排了同一條直線上的三個救援中心(記為B,C,D).當返回艙距地面1萬米的P點時(假定以后垂直下落,并在A點著陸),C救援中心測得飛船位于其南偏東60°方向,仰角為60°,B救援中心測得飛船位于其南偏西30°方向,仰角為30°.D救援中心測得著陸點A位于其正東方向.
(1)求B,C兩救援中心間的距離;
(2)D救援中心與著陸點A間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角梯形PBCD中, ,A為PD的中點,如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等比數列,首項a1=2,a4=16
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}是等差數列,且b3=a3 , b5=a5 , 求數列{bn}的通項公式及前n項的和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為120°的扇形廣場內(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點間距離為定長 米.
(1)當∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應盡量增加觀光道路總長度,試確定圖中A、B兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點P(﹣5,a)作圓x2+y2﹣2ax+2y﹣1=0的兩條切線,切點分別為M(x1 , y1),N(x2 , y2),且 +
=0,則實數a的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期為π,且f(﹣x)=f(x),則( )
A.f(x)在 單調遞減
B.f(x)在( ,
)單調遞減
C.f(x)在(0, )單調遞增
D.f(x)在( ,
)單調遞增
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有6道題,其中3道甲類題,2道乙類題,張同學從中任取2道題解答.試求: (Ⅰ)所取的2道題都是甲類題的概率;
(Ⅱ)所取的2道題不是同一類題的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com