【題目】楊輝三角,又稱帕斯卡三角,是二項式系數在三角形中的一種幾何排列.在我國南宋數學家楊輝所著的《詳解九章算法》(1261年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數規律.現把楊輝三角中的數從上到下,從左到右依次排列,得數列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數列,若數列
的前
項和為
,則
( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在萬眾創新的大經濟背景下,某成都青年面包店推出一款新面包,每個面包的成本價為元,售價為
元,該款面包當天只出一爐(一爐至少
個,至多
個),當天如果沒有售完,剩余的面包以每個
元的價格處理掉,為了確定這一爐面包的個數,該店記錄了這款新面包最近
天的日需求量(單位:個),整理得下表:
日需求量 | |||||
頻數 |
(1)根據表中數據可知,頻數與日需求量
(單位:個)線性相關,求
關于
的線性回歸方程;
(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為
,記當日這款新面包獲得的總利潤為
(單位:元).求
的分布列及其數學期望.
相關公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線E:
的左、右焦點,P是雙曲線上一點,
到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當
時,
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2-2x-4y=0.
(1)求圓C關于直線x-y-1=0對稱的圓D的標準方程;
(2)過點P(4,-4)的直線l被圓C截得的弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:①直線的斜率
,則直線
的傾斜角
;②直線
:
與以
、
兩點為端點的線段相交,則
或
;③如果實數
滿足方程
,那么
的最大值為
;④直線
與橢圓
恒有公共點,則
的取值范圍是
.其中正確命題的序號是______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為200元,低于100箱按原價銷售;不低于100箱通過雙方議價,買方能以優惠成交的概率為0.6,以優惠
成交的概率為0.4.
(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達成的成交價相互獨立,求甲單位優惠比例不低于乙單位優惠比例的概率;
(2)某單位需要這種零件650箱,求購買總價的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,其中一個焦點F在直線
上.
(1)求橢圓C的方程;
(2)若直線和直線
與橢圓分別相交于點
、
、
、
,求
的值;
(3)若直線與橢圓交于P,Q兩點,試求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com