精英家教網 > 高中數學 > 題目詳情
已知c>0,設p:函數y=cx在R上單調遞減; Q:x+|x-2c|>1不等式的解集為R.如果p和Q有且僅有一個正確,求c的取值范圍______.
∵函數y=cx在R上單調遞減
∴0<c<1
即P:0<c<1
∵x+|x-2c|>1不等式的解集為R.∴函數y=x+|x-2c|在R上恒大于1.
而x+|x-2c|=
2x-2c,x≥2c
2c,x<2c
可知x+|x-2c|的最小值為2c,則根據題意可得,2c>1
即Q:c
1
2

∵p和Q有且僅有一個正確
①若P正確,Q錯誤,則
0<c<1
0<c≤
1
2
,則0<c≤
1
2

②若P錯誤,Q正確,則
c≥1
c>
1
2
,則c≥1
綜上可得,0<c≤
1
2
或c≥1
故答案為:(0,
1
2
]∪[1,+∞)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知c>0,設P:函數y=cx在R上單調遞減,Q:不等式x+|x-2c|>1的解集為R.如果P和Q有且僅有一個正確,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設p:函數y=cx在R上單調遞減;q:函數g(x)=lg(2cx2+2x+1)的值域為R,如果“p且q”為假命題,“p或q為真命題,則c的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設P:函數y=cx在R上單調遞減,Q:不等式x+|x-2c|>1對任意實數x恒成立,若“P或Q”為真,“P且Q”為假,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設P:函數y=cx在R上單調遞減,Q:當x∈[
1
2
,2]時,不等式5c<x+
1
x
有解,若“P或Q”為真,“P且Q”為假,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設p:函數y=cx在R上單調遞減;q:函數g(x)=lg(2cx2+2x+1)的定義域為R,若“p且q”為假命題,“p或q”為真命題,求c的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视