精英家教網 > 高中數學 > 題目詳情
已知正數x、y滿足x+2y=1,求
1
x
+
1
y
的最小值.
∵x、y為正數,且x+2y=1,
1
x
+
1
y
=(x+2y)(
1
x
+
1
y

=3+
2y
x
+
x
y
≥3+2
2
,
當且僅當
2y
x
=
x
y
,即當x=
2
-1,y=1-
2
2
時等號成立.
1
x
+
1
y
的最小值為3+2
2
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正數x、y滿足x+2y=1,求
1
x
+
1
y
的最小值.
解:∵x+2y=1且x、y>0,
1
x
+
1
y
=(
1
x
+
1
y
)(x+2y)≥2
1
xy
•2
2xy
=4
2
,
(
1
x
+
1
y
)min=4
2

判斷以上解法是否正確?說明理由;若不正確,請給出正確解法.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正數x,y滿足x+2y=1,則
1
x
+
1
y
的最小值為( 。
A、6
B、5
C、3+2
2
D、4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正數x,y滿足x+2y=1,則
1
x
+
1
y
的最小值為
3+2
2
3+2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•奉賢區二模)已知正數x,y滿足x+y=xy,則x+y的最小值是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正數x,y滿足x+2y-xy=0,則x+2y的最小值為( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视