精英家教網 > 高中數學 > 題目詳情
7、設a∈R,函數f(x)=x3+ax2+(a-3)x的導函數是f′(x),若f′(x)是偶函數,則曲線y=f(x)在原點處的切線方程為(  )
分析:先由求導公式求出f′(x),根據偶函數的性質,可得f′(-x)=f′(x),從而求出a的值,然后利用導數的幾何意義求出切線的斜率,進而寫出切線方程.
解答:解:f′(x)=3x2+2ax+(a-3),
∵f′(x)是偶函數,
∴3(-x)2+2a(-x)+(a-3)=3x2+2ax+(a-3),
解得a=0,
∴k=f′(0)=-3,
∴切線方程為y=-3x.
故選A.
點評:本題主要考查求導公式,偶函數的性質以及導數的幾何意義,難度中等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ax3-3x2
(1)若x=2是函數y=f(x)的極值點,求實數a的值;
(2)若函數g(x)=exf(x)在[0,2]上是單調減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

17、設a∈R,函數f(x)=2x3+(6-3a)x2-12ax+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)求函數f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ax3-3x2,x=2是函數y=f(x)的極值點.
(1)求a的值;
(2)求函數f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=x3+ax2+(a-3)x的導函數是f′(x),若f′(x)是偶函數,則以下結論正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ex-ae-x的導函數為f′(x),且f′(x)是奇函數,則a=(  )
A、0B、1C、2D、-1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视