【題目】現有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規定每件中藥材重量不小于15克為優質品.如圖所示的程序框圖表示統計20個樣本中的優質品數,其中表示每件藥材的重量,則圖中①,②兩處依次應該填的整數分別是____________.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E,F分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2.
(1)求證:平面AEF⊥平面PBC;
(2)求三棱錐P﹣AEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=bax(a>0,且a≠1,b∈R)的圖象經過點A(1,6),B(3,24).
(1)設g(x)= ﹣
,確定函數g(x)的奇偶性;
(2)若對任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)五邊形中,
,將
沿
折到
的位置,得到四棱錐
,如圖(2),點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若直線與所成角的正切值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點E、F分別為棱AB、PD的中點. (Ⅰ)求證:AF∥平面PCE;
(Ⅱ)AD與平面PCD所成的角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調查了100名市民,統計其周平均網購的次數,并整理得到如下的頻數分布直方圖.這100名市民中,年齡不超過40歲的有65人將所抽樣本中周平均網購次數不小于4次的市民稱為網購迷,且已知其中有5名市民的年齡超過40歲.
(1)根據已知條件完成下面的列聯表,能否在犯錯誤的概率不超過0.10的前提下認為網購迷與年齡不超過40歲有關?
網購迷 | 非網購迷 | 合計 | |
年齡不超過40歲 | |||
年齡超過40歲 | |||
合計 |
(2)若從網購迷中任意選取2名,求其中年齡超過40歲的市民人數的分布列與期望.
附: ;
0.15 | 0.10 | 0.05 | 0.01 | |
2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(﹣1,1),則函數g(x)=f( )+f(x﹣1)的定義域為( )
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com