精英家教網 > 高中數學 > 題目詳情

【題目】對于函數,若在定義域內存在實數滿足,則稱為局部奇函數

1)已知二次函數,試判斷是否為局部奇函數,并說明理由;

2)是定義在區間上的局部奇函數求實數的取值范圍;

3)為定義域為上的局部奇函數,求實數的取值范圍;

【答案】1)詳見解析2);3)

【解析】

試題分析:1)根據條件中局部奇函數的定義,只需判斷方程是否有解即可下結論;2

根據局部奇函數的定義,參變分離后可得到關于的函數關系式,即可求解;3)根據局部奇函數的定

義,可得到,滿足的式子,換元后可將問題等價轉化為二次函數的零點分布,即可求解.

試題解析1)由題意得:,,

成立,局部奇函數;2)由題意得:

,有解,

,,單調遞減,在單調遞增,

;3)由定義得:,

,有解

,方程等價于時有解,

,對稱軸,

,則,即,

此時,,,即此時,

綜上得:,即實數的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數).

(Ⅰ)若曲線上點處的切線過點,求函數的單調減區間;

(Ⅱ)若函數上無零點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于CD兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐PABCD中,底面ABCD是邊長為8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱錐PABCD的體積;

(2)求證:ADPB

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若上為增函數,求實數的取值范圍;

(2)當時,函數有零點,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分12分甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數據;

2現要從中選派一人參加數學競賽,從統計學的角度在平均數、方差或標準差中選兩個分析,你認為選派哪位學生參加合適?請說明理由

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2016·重慶高二檢測)如圖,三棱柱ABC-A1B1C1,側棱垂直底面ACB=90°,AC=BC=AA1D是棱AA1的中點.

(1)證明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,GACBD的交點,BE⊥平面ABCD,

(1)證明平面AEC⊥平面BED.

(2)若∠ABC=120°AEEC,三棱錐E-ACD的體積為,求該三棱錐的側面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视