精英家教網 > 高中數學 > 題目詳情
(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點
是橢圓的右頂點.過點的直線交拋物線兩點,滿足,
其中是坐標原點.
(1)求橢圓的方程;
(2)過橢圓的左頂點軸平行線,過點軸平行線,直線
相交于點.若是以為一條腰的等腰三角形,求直線的方程.
(本小題15分)
(1),,,設直線代入中,
整理得。設,則,
,由   
, 解得 (舍),得
所以橢圓的方程為.                    (7分)
(2)橢圓的左頂點,所以點. 易證三點共線.
(I)當為等腰的底邊時,由于,是線段的中點,
,所以,即直線的方程為;       (11分)
(II) 當為等腰的底邊時,  又
解得,  ,
所以直線的方程為,即;      (15分)
綜上所述,當為等腰三角形時,直線的方程為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,已知直線的右焦點F,且交橢圓CA,B兩點,點A,F,B在直線上的射影依次為點D,KE.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)連接AE,BD,證明:當m變化時,直線AEBD相交于一定點。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點;圓的圓心在射線上,圓過原點,且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點,長軸長為,過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(1)求橢圓的方程;
(2)若線段AB中點的橫坐標是求直線l的斜率;
(3)在x軸上是否存在點M,使是與k無關的常數?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當時,求k與b的關系,并證明直線過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓,、是橢圓上關于原點對稱的兩點,是橢圓上任意一點,且直線的斜率分別為、,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若橢圓的兩個焦點和短軸兩個頂點是有一個內角為的菱形的四個頂點,則橢圓的離心率為         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點P在橢圓上,焦點為F1F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為橢圓上任一點(不是長軸頂點),過點的切線與過長軸頂點與長軸垂直的直線相交于點,求證以線段為直徑的圓過這個橢圓的兩個焦點

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视