【題目】已知拋物線,且
,
,
三點中恰有兩點在拋物線
上,另一點是拋物線
的焦點.
(1)求證:、
、
三點共線;
(2)若直線過拋物線
的焦點且與拋物線
交于
、
兩點,點
到
軸的距離為
,點
到
軸的距離為
,求
的最小值.
科目:高中數學 來源: 題型:
【題目】為了讓學生了解環保知識,增強環保意識,某中學舉行了一次“環保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統計.請你根據尚未完成并有局部污損的頻率分布表和頻數分布直方圖,解答下列問題:
(1)填充頻率分布表的空格(將答案直接填在表格內);
(2)補全頻數分布直方圖;
(3)若成績在75.5~85的學生為二等獎,問獲得二等獎的學生約為多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,雙曲線
的右焦點為
,過點
的直線與拋物線在第一象限的交點為
,且拋物線在點
處的切線與直線
垂直,則
的最大值為( )
A. B.
C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統計表:
維修次數 | 8 | 9 | 10 | 11 | 12 |
頻數 | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內的維修次數,y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數.
(1)若=10,求y與x的函數解析式;
(2)若要求“維修次數不大于”的頻率不小于0.8,求n的最小值;
(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買10次還是11次維修服務?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓(
)的離心率是
,點
在短軸
上,且
。
(1)球橢圓的方程;
(2)設為坐標原點,過點
的動直線與橢圓交于
兩點。是否存在常數
,使得
為定值?若存在,求
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,點
為平面內一動點,以線段
為直徑的圓內切于圓
,設動點
的軌跡為曲線
.
(Ⅰ)求曲線的方程;
(Ⅱ) 是曲線
上的動點,且直線
經過定點
,問在
軸上是否存在定點
,使得
,若存在,請求出定點
,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從一批草莓中,隨機抽取個,其重量(單位:克)的頻率分布表如下:
分組(重量) | ||||
頻數(個) |
已知從個草莓中隨機抽取一個,抽到重量在
的草莓的概率為
.
(1)求出,
的值;
(2)用分層抽樣的方法從重量在和
的草莓中共抽取
個,再從這
個草莓中任取
個,求重量在
和
中各有
個的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村電費收取有以下兩種方案供農戶選擇:方案一:每戶每月收管理費2元,月用電不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收取. 方案二:不收管理費,每度0.58元.
(1)求方案一收費元與用電量x (度)之間的函數關系;
(2)老王家九月份按方案一交費35元,問老王家該月用電多少度?
(3)老王家月用電最在什么范圍時,選擇方案一比選擇方案二更好?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com