【題目】國內某知名連鎖店分店開張營業期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該分店經理對開業前天參加抽獎活動的人數進行統計,
表示開業第
天參加抽獎活動的人數,得到統計表格如下:
經過進一步統計分析,發現與
具有線性相關關系.
(1)根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)若該分店此次抽獎活動自開業始,持續天,參加抽獎的每位顧客抽到一等獎(價值
元獎品)的概率為
,抽到二等獎(價值
元獎品)的概率為
,抽到三等獎(價值
元獎品)的概率為
.
試估計該分店在此次抽獎活動結束時送出多少元獎品?
參考公式: ,
.
科目:高中數學 來源: 題型:
【題目】如圖,設 與定點
的距離和它到直線
的距離的比是常數
,
(1)求點 的軌跡曲線
的方程:
(2)過定點 的直線
交曲線
于
兩點,以
三點(
為坐標原點)為頂點作平行四邊形
,若點
剛好在曲線
上,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某教育機構隨機某校20個班級,調查各班關注漢字聽寫大賽的學生人數,根據所得數據的莖葉圖,以組距為5將數據分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出該產品獲利潤500元,未售出的產品,每
虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直圖,如圖所示.經銷商為下一個銷售季度購進了
該農產品.以
(
)表示下一個銷售季度內的市場需求量,
(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(Ⅰ)將表示為
的函數;
(Ⅱ)根據直方圖估計利潤不少于57000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某顏料公司生產、
兩種產品,其中生產每噸
產品,需要甲染料
噸,乙染料
噸,丙染料
噸,生產每噸
產品,需要甲染料
噸,乙染料
噸,丙染料
噸,且該公司一天之內甲、乙、丙三種染料的用量分別不超過
噸、
噸、
噸,如果
產品的利潤為
元/噸,
產品的利潤為
元/噸,則該顏料公司一天內可獲得的最大利潤為( )
A. 元 B.
元 C.
元 D.
元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
.
(1)求∠C的大;
(2)設角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【山東省實驗中學2017屆高三第一次診斷】已知橢圓:
的右焦點
,過點
且與坐標軸不垂直的直線與橢圓交于
,
兩點,當直線
經過橢圓的一個頂點時其傾斜角恰好為
.
(1)求橢圓的方程;
(2)設為坐標原點,線段
上是否存在點
,使得
?若存在,求出實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知動直線過點
,且與圓
交于
、
兩點.
(1)若直線的斜率為
,求
的面積;
(2)若直線的斜率為
,點
是圓
上任意一點,求
的取值范圍;
(3)是否存在一個定點(不同于點
),對于任意不與
軸重合的直線
,都有
平分
,若存在,求出定點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com