【題目】下列說法正確的是______.
①若直線與直線
互相垂直,則
②若,
兩點到直線
的距離分別是
,
,則滿足條件的直線
共有3條
③過,
兩點的所有直線方程可表示為
④經過點且在
軸和
軸上截距都相等的直線方程為
科目:高中數學 來源: 題型:
【題目】某企業為確定下一年投入某種產品的研發費用,需了解年研發費用(單位:千萬元)對年銷售量
(單位:千萬件)的影響,統計了近
年投入的年研發費用
與年銷售量
的數據,得到散點圖如圖所示.
(1)利用散點圖判斷和
(其中
均為大于
的常數)哪一個更適合作為年銷售量
和年研發費用
的回歸方程類型(只要給出判斷即可,不必說明理由)
(2)對數據作出如下處理,令,得到相關統計量的值如下表:根據第(1)問的判斷結果及表中數據,求
關于
的回歸方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企業年利潤(單位:千萬元)與
的關系為
(其中
),根據第(2)問的結果判斷,要使得該企業下一年的年利潤最大,預計下一年應投入多少研發費用?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}為等差數列,數列{an},{bn}滿足a1=b1=2,b2=6,且an+1bn=anbn+bn+1.
(1)求{an}的通項公式;
(2)求{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年某地初中畢業升學體育考試規定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學校在初三上學期開始時,為掌握全年級學生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規則如表1:
表1
每分鐘跳繩個數 | ||||
得分 | 17 | 18 | 19 | 20 |
(1)規定:學生1分鐘跳繩得分20分為優秀,在抽取的100名學生中,男生跳繩個數大于等于185個的有28人,根據已知條件完成表2,并根據這100名學生測試成績,能否有99%的把握認為學生1分鐘跳繩成績優秀與性別有關?
表2
跳繩個數 | 合計 | ||
男生 | 28 | ||
女生 | 54 | ||
合計 | 100 |
附:參考公式:
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步.假設今年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,全年級恰有2000名學生,所有學生的跳繩個數服從正態分布
(用樣本數據的平均值和方差估計總體的期望和方差,各組數據用中點值代替).
①估計正式測試時,1分鐘跳182個以上的人數(結果四舍五入到整數);
②若在全年級所有學生中任意選取3人,正式測試時1分鐘跳195個以上的人數為,求
的分布列及期望.
附:若隨機變量服從正態分布
,則
,
,
.
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
經過原點的直線
將
分成左、右兩部分,記左、右兩部分的面積分別為
,則
取得最小值時,直線
的斜率( )
A.等于1B.等于C.等于
D.不存在
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,兩個點列 和
滿足:①
;②
(1)求點和
的坐標;
(2)求向量的坐標;
(3)對于正整數k,用表示無窮數列
中從第k+1項開始的各項之和,用
表示無窮數列
中從第k項開始的各項之和,即
,
若存在正整數k和p,使得
,求k,p的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解兒子身高與其父親身高的關系,隨機調查了5對父子的身高,統計數據如下表所示.
編 號 | A | B | C | D | E |
父親身高 | 174 | 176 | 176 | 176 | 178 |
兒子身高 | 175 | 175 | 176 | 177 | 177 |
(1)從這五對父子任意選取兩對,用編號表示出所有可能取得的結果,并求隨機事件 “兩對父子中兒子的身高都不低于父親的身高”發生的概率;
(2)由表中數據,利用“最小二乘法”求關于
的回歸直線的方程.
參考公式:,
;回歸直線:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于下列結論:
①函數是偶函數;
②直線是函數
的圖象的一條對稱軸;
③將函數的圖象向左平移
個單位后,所得圖象的函數解析式為
;
④函數的圖象關于點
成中心對稱.
其中所有正確結論的序號為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com