【題目】已知向量 =(sinx,﹣1),
=(
cosx,﹣
),函數f(x)=(
)
﹣2.
(1)求函數f(x)的最小正周期T;
(2)已知a,b,c分別為△ABC內角A,B,C的對邊,其中A為銳角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面積S.
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C: (a>b>0)的離心率為
,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求
的最小值;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:|OR||OS|是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知左、右焦點分別為F1(﹣c,0),F2(c,0)的橢圓 過點
,且橢圓C關于直線x=c對稱的圖形過坐標原點.
(I)求橢圓C的離心率和標準方程.
(II)圓 與橢圓C交于A,B兩點,R為線段AB上任一點,直線F1R交橢圓C于P,Q兩點,若AB為圓P1的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(2
cosx,cosx),
=(sinx,2cosx)(x∈R),設函數f(x)=
﹣1. (Ⅰ)求函數f(x)的單調減區間;
(Ⅱ)已知銳角△ABC的三個內角分別為A,B,C,若f(A)=2,B= ,邊AB=3,求邊BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環節中,評委將他們的筆試成績作為樣本數據,繪制成如圖所示的莖葉圖,為了增加結果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告訴大家,如果某位選手的成績高于90分(不含90分),則直接“晉級” (Ⅰ)求乙班總分超過甲班的概率
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分
①請你從平均分光和方差的角度來分析兩個班的選手的情況;
②主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總人數為ξ,求ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,等腰梯形BCDP中,BC∥PD,BA⊥PD于點A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如圖2),使∠P'AD=90°. (Ⅰ)求證:CD⊥平面P'AC;
(Ⅱ)求二面角A﹣P'D﹣C的余弦值;
(Ⅲ)線段P'A上是否存在點M,使得BM∥平面P'CD.若存在,指出點M的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象上相鄰兩個最高點的距離為π.若將函數f(x)的圖象向左平移 個單位長度后,所得圖象關于y軸對稱.則函數f(x)的解析式為( )
A.f(x)=2sin(x+ )
B.f(x)=2sin(x+ )?
C.f(x)=2sin(2x+ )
D.f(x)=2sin(2x+ )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com