已知橢圓C1的中心在坐標原點,兩個焦點分別為F1(-2,0),F2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于B,C兩點,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點P?若存在,指出這樣的點P有幾個(不必求出點P的坐標);若不存在,說明理由.
(1)+
=1 (2)存在,有2個
解析解:(1)設橢圓方程為+
=1(a>b>0),
由題意可知2a=+
=8.
∴a=4,b2=a2-c2=12.
∴橢圓方程為+
=1.
(2)設B(x1,),C(x2,
),
直線BC的斜率為k,則k=.
由y=x2,得y′=
x.
∴點B、C處的切線l1、l2的斜率分別為x1,
x2,
∴l1的方程為y-=
x1(x-x1),
即y=x1x-
,
同理,l2的方程為y=x2x-
.
由
解得
∴P(2k,2k-3).
∵|PF1|+|PF2|=|AF1|+|AF2|,
∴點P在橢圓C1:+
=1上,
∴+
=1.
化簡得7k2-12k-3=0.(*)
由Δ=122-4×7×(-3)=228>0,
可得方程(*)有兩個不等的實數根.
∴滿足條件的點P有兩個.
科目:高中數學 來源: 題型:解答題
已知橢圓
(1)求橢圓C的標準方程。
(2)過點Q(0,)的直線與橢圓交于A、B兩點,與直線y=2交于點M(直線AB不經過P點),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數
,使得
若存在,求出名
的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為B(0,4),離心率
,直線
交橢圓于M,N兩點。
(1)若直線的方程為
,求弦MN的長;
(2)如果△BMN的重心恰好為橢圓的右焦點F,求直線方程的一般式。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點D(0,-2),過點D作拋物線:
的切線l,切點A在第二象限。
(1)求切點A的縱坐標;
(2)若離心率為的橢圓
恰好經過A點,設切線l交橢圓的另一點為B,若設切線l,直線OA,OB的斜率為k,
,①試用斜率k表示
②當
取得最大值時求此時橢圓的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知圓P在x軸上截得線段長為2,在y軸上截得線段長為2
.
(1)求圓心P的軌跡方程;
(2)若P點到直線y=x的距離為,求圓P的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知左焦點為F(-1,0)的橢圓過點E(1,).過點P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設M,N分別為線段AB,CD的中點.
(1)求橢圓的標準方程;
(2)若P為線段AB的中點,求k1;
(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線的焦點為
,點
,線段
的中點在拋物線上. 設動直線
與拋物線相切于點
,且與拋物線的準線相交于點
,以
為直徑的圓記為圓
.
(1)求的值;
(2)證明:圓與
軸必有公共點;
(3)在坐標平面上是否存在定點,使得圓
恒過點
?若存在,求出
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓的圓心在坐標原點O,且恰好與直線
相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN軸于N,若動點Q滿足
(其中m為非零常數),試求動點
的軌跡方程
.
(3)在(2)的結論下,當時,得到動點Q的軌跡曲線C,與
垂直的直線
與曲線C交于 B、D兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使||=|
|?若存在,求出D點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com