(本小題滿分14分)
某公司2009年9月投資14400萬元購得上海世界博覽會某種紀念品的專利權及生產設備,生產周期為一年.已知生產每件紀念品還需要材料等其它費用20元,為保證有一定的利潤,公司決定紀念品的銷售單價不低于150元,進一步的市場調研還發現:該紀念品的銷售單價定在150元到250元之間較為合理(含150元及250元).并且當銷售單價定為150元時,預測年銷售量為150萬件;當銷售單價超過150元但不超過200元時,預測每件紀念品的銷售價格每增加1元,年銷售量將減少1萬件;當銷售單價超過200元但不超過250元時,預測每件紀念品的銷售價格每增加1元,年銷售量將減少1.2萬件.
根據市場調研結果,設該紀念品的銷售單價為(元),年銷售量為
(萬件),平均每件紀念品的利潤為
(元).
⑴求年銷售量為關于銷售單價
的函數關系式;
⑵該公司考慮到消費者的利益,決定銷售單價不超過200元,問銷售單價為多少時,平均每件紀念品的利潤
最大?
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com