精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的偶函數,且f(x+1)為奇函數.若f(2)=1,則f(1)+f(2)+f(3)+…+f(2015)=(
A.1
B.2014
C.0
D.﹣2014

【答案】A
【解析】解:∵y=f(x+1)是定義在R上的奇函數, ∴f(﹣x+1)=﹣f(x+1),
∵函數y=f(x)是定義在R上的偶函數,
∴f(﹣x)=f(x)
即有f(﹣x﹣1)=f(x+1),
則f(﹣x﹣1)=﹣f(﹣x+1),
即f(x+1)=﹣f(x﹣1),即有f(x+2)=﹣f(x),
則f(x+4)=﹣f(x+2)=f(x),
則f(x)的周期是4,
由于f(2)=1,則f(2)=﹣f(0)=1,則f(0)=﹣1,
又f(﹣1)=f(1),f(﹣1)=﹣f(1),則f(1)=0,
又f(3)=﹣f(1)=0,f(4)=f(0)=﹣1,
則有f(1)+f(2)+f(3)+f(4)=0+1+0+(﹣1)=0,
由于f(2014)=f(4×503+2)=f(2)
f(1)+f(2)+f(3)+…+f(2015)=0×503+[f(1)+f(2)+f(3)]=1.
故選:A.
【考點精析】掌握函數奇偶性的性質是解答本題的根本,需要知道在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】命題“若a=0或b=0,則ab=0”的逆否命題是(填真命題或假命題).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線m、n和平面α、β,若α⊥β,α∩β=m,nα,要使n⊥β,則應增加的條件是(
A.m∥n
B.n⊥m
C.n∥α
D.n⊥α

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的函數f(x)不是偶函數,則下列命題一定為真命題的是(  )

A.xR,f(x)≠f(x)

B.xR,f(x)≠f(x)

C.x0R,f(x0)≠f(x0)

D.x0R,f(x0)≠f(x0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列能與sin20°的值相等的是( 。
A.cos20°
B.sin(﹣20°)
C.sin70°
D.sin160°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】焦點在直線3x﹣4y﹣12=0上的拋物線的標準方程為(
A.y2=16x或x2=﹣12x
B.y2=16x或x2=﹣12y
C.y2=16x或x2=12y
D.y2=﹣12x或x2=16y

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c是三條不重合的直線,α,β是兩個不重合的平面,直線l∥α,則(
A.a∥c,b∥ca∥b
B.a∥β,b∥βa∥b
C.a∥c,c∥αa∥α
D.a∥la∥α

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,值域為[0,+∞)的偶函數是(
A.y=x2+1
B.y=lgx
C.y=|x|
D.y=xcosx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面說法不正確的選項(
A.函數的單調區間可以是函數的定義域
B.函數的多個單調增區間的并集也是其單調增區間
C.具有奇偶性的函數的定義域定關于原點對稱
D.關于原點對稱的圖象一定是奇函數的圖象

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视