精英家教網 > 高中數學 > 題目詳情
數列{an}是無窮數列是{an}有極限的_________條件.

解析:{an}有極限則{an}一定是無窮數列,反之,{an}是無窮數列,但{an}不一定有極限.如:an為1,2,3,…,n,…,an沒有極限.

答案:必要不充分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

從數列{an}中取出部分項,并將它們按原來的順序組成一個數列,稱之為數列{an}的一個子數列.設數列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數列.
(1)若a1,a2,a5成等比數列,求其公比q.
(2)若a1=7d,從數列{an}中取出第2項、第6項作為一個等比數列的第1項、第2項,試問該數列是否為{an}的無窮等比子數列,請說明理由.
(3)若a1=1,從數列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數列的第1項、第2項,試問當且僅當t為何值時,該數列為{an}的無窮等比子數列,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

巳知無窮數列{an}的各項均為正整數,Sn為數列{an}的前n項和.
(Ⅰ)若數列{an}是等差數列,且對任意正整數n都有Sn3=(Sn)3成立,求數列{an}的通項公式;
(Ⅱ)對任意正整數n,從集合{a1,a2,a3,…an}中不重復地任取若干個數,這些數之間經過加減運算后所得數的絕對值為互不相同的正整數,且這些正整數與a1,a2,a3,…an一起恰好是1至Sn全體正整數組成的集合.
 (1)求a1,a2,的值;
 (2)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從數列{an}中取出部分項,并將它們按原來的順序組成一個數列,稱之為數列{an}的一個子數列.設數列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數列.
(1)若a1,a2,a5成等比數列,求其公比q.
(2)若a1=7d,從數列{an}中取出第2項、第6項作為一個等比數列的第1項、第2項,試問該數列是否為{an}的無窮等比子數列,請說明理由.
(3)若a1=1,從數列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數列的第1項、第2項,試問當且僅當t為何值時,該數列為{an}的無窮等比子數列,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高考數學模擬試卷(解析版) 題型:解答題

從數列{an}中取出部分項,并將它們按原來的順序組成一個數列,稱之為數列{an}的一個子數列.設數列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數列.
(1)若a1,a2,a5成等比數列,求其公比q.
(2)若a1=7d,從數列{an}中取出第2項、第6項作為一個等比數列的第1項、第2項,試問該數列是否為{an}的無窮等比子數列,請說明理由.
(3)若a1=1,從數列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數列的第1項、第2項,試問當且僅當t為何值時,該數列為{an}的無窮等比子數列,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省無錫市錫山區羊尖高級中學高考數學模擬試卷(數學)(解析版) 題型:解答題

從數列{an}中取出部分項,并將它們按原來的順序組成一個數列,稱之為數列{an}的一個子數列.設數列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數列.
(1)若a1,a2,a5成等比數列,求其公比q.
(2)若a1=7d,從數列{an}中取出第2項、第6項作為一個等比數列的第1項、第2項,試問該數列是否為{an}的無窮等比子數列,請說明理由.
(3)若a1=1,從數列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數列的第1項、第2項,試問當且僅當t為何值時,該數列為{an}的無窮等比子數列,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视