設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
4 |
F1M |
F2N |
查看答案和解析>>
科目:高中數學 來源: 題型:
x2 | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:
已知橢圓=1(a>b>0),其右準線l與x軸交于點A,橢圓的上頂點為B,過它的右焦點F且垂直于長軸的直線交橢圓于點P,直線AB恰經過線段FP的中點D.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設橢圓的左、右頂點分別是A1、A2,且=-3,求橢圓方程;
(Ⅲ)在(Ⅱ)的條件下,設Q是橢圓右準線l上異于A的任意一點,直線QA1、QA2與橢圓的另一個交點分別為M、N,求證:直線MN與x軸交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分12分)
已知橢圓的焦點在
軸上,中心在原點,離心率
,直線
和以原點為圓心,橢圓
的短半軸為半徑的圓
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為
、
,點
是橢圓上異于
、
的任意一點,設直線
、
的斜率分別為
、
,證明
為定值;
(Ⅲ)設橢圓方程,
、
為長軸兩個端點,
為橢圓上異于
、
的點,
、
分別為直線
、
的斜率,利用上面(Ⅱ)的結論得
( )(只需直接寫出結果即可,不必寫出推理過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
.(2012年高考天津卷理科19)(本小題滿分14分)設橢圓的左、右頂點分別為
,點P在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明:直線
的斜率
滿足
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com