【題目】動圓過定點
,且在
軸上截得的弦
的長為4.
(1)若動圓圓心的軌跡為曲線
,求曲線
的方程;
(2)在曲線的對稱軸上是否存在點
,使過點
的直線
與曲線
的交點
滿足
為定值?若存在,求出點
的坐標及定值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
;直線
的參數方程為
(
為參數),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若點的極坐標為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了人口規模相當的個城市采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價:
(單位:元/月)和購買總人數
(單位:萬人)的關系如表:
定價x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購買總人數y(萬人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據表中的數據,請用線性回歸模型擬合與
的關系,求出
關于
的回歸方程;并估計
元/月的流量包將有多少人購買?
(Ⅱ)若把元/月以下(不包括
元)的流量包稱為低價流量包,
元以上(包括
元)的流量包稱為高價流量包,試運用獨立性檢驗知識,填寫下面列聯,并通過計算說明是否能在犯錯誤的概率不超過
的前提下,認為購買人的年齡大小與流量包價格高低有關?
定價x(元/月) | 小于50元 | 大于或等于50元 | 總計 |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計 |
參考公式:其中
其中
參考數據:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】點是拋物線
內一點,
是拋物線
的焦點,
是拋物線
上任意一點,且已知
的最小值為2.
(1)求拋物線的方程;
(2)拋物線上一點
處的切線與斜率為常數
的動直線
相交于
,且直線
與拋物線
相交于
、
兩點.問是否有常數
使
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,
是以
為直角頂點的等腰直角三角形,
為線段
的中點,
是
的中點,
與
分別是以
、
為底邊的等邊三角形,現將
與
分別沿
與
向上折起(如圖
),則在翻折的過程中下列結論可能正確的個數為( )
圖 圖
(1)直線直線
;(2)直線
直線
;
(3)平面平面
;(4)直線
直線
.
A.個B.
個C.
個D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直角梯形中,
,
,E、F分別是
和
上的點,且
,
,
,沿
將四邊形
折起,如圖2,使
與
所成的角為60°.
(1)求證:平面
;
(2)M為上的點,
,若二面角
的余弦值為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com