解:(Ⅰ)向量

滿足:

.
∴

∵A、B、C是直線l上不同的三點
∴

∴

∴f(x)=

;
(Ⅱ)∵

,∴原不等式為

.
得

,或

,①…(4分)
設

,
依題意知a<g(x)或a>h(x)在x∈

上恒成立,
∵

,

,
∴g(x)與h(x)在

上都是增函數,要使不等式①成立,
當且僅當

或

,∴

,或

.…(8分)
(Ⅲ)方程f(x)=2x+b即為

,
變形為

.
令φ

,
∴φ

…(10分)
列表寫出x,φ'(x),φ(x)在[0,1]上的變化情況:
x | 0 | (0, ) |  | ( ,1) | 1 |
?φ'(x) | | 小于0 | 0 | 大于0 | |
?φ(x) | ln2 | 單調遞減 | 取極小值 | 單調遞增 |  |
…(12分)
顯然φ(x)在(0,1]上的極小值也即為它的最小值

.
現在比較ln2與

的大。
∵

,∴

.
∴要使原方程在(0,1]上恰有兩個不同的實根,必須使

.
即實數b的取值范圍為

.…(14分)
分析:(Ⅰ)根據向量

滿足:

,結合A、B、C是直線l上不同的三點,即可求函數y=f(x)的解析式;
(Ⅱ)求導函數,原不等式為

,得

,或

,分別求出對應函數的最小值與最大值,即可求得結論;
(Ⅲ)方程f(x)=2x+b變形為

,研究左邊對應函數的最值,即可求得實數b的取值范圍.
點評:本題考查導數知識的運用,考查向量知識,考查函數的單調性與最值,考查函數與方程思想,屬于中檔題.