【題目】目前,成都市B檔出租車的計價標準是:路程2km以內(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元/km).(現實中要計等待時間且最終付費取整數,本題在計算時都不予考慮)
(1)將乘客搭乘一次B檔出租車的費用f(x)(元)表示為行程x(0<x≤60,單位:km)的分段函數;
(2)某乘客行程為16km,他準備先乘一輛B檔出租車行駛8km,然后再換乘另一輛B檔出租車完成余下行程,請問:他這樣做是否比只乘一輛B檔出租車完成全部行程更省錢?
【答案】
(1)解:由題意得,車費f(x)關于路程x的函數為:
=
(2)解:只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3(元),
換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8(元).
∵40.3>38.8,
∴該乘客換乘比只乘一輛車更省錢
【解析】(1)仔細審題,由成都市B檔出租車的計價標準,能夠列出乘客搭乘一次B檔出租車的費用f(x)(元)表示為行程x(0<x≤60,單位:km)的分段函數.(2)只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3元,換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8元,由此能得到該乘客換乘比只乘一輛車更省錢.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga( +x)(其中a>1).
(1)判斷函數y=f(x)的奇偶性,并說明理由;
(2)判斷 (其中m,n∈R,且m+n≠0)的正負,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是奇函數,且在(0,+∞)內是增函數,又f(﹣3)=0,則(x﹣1)f(x)<0的解集是( )
A.{x|﹣3<x<0或1<x<3}
B.{x|1<x<3}
C.{x|x>3或x<﹣3}
D.{x|x<﹣3或x>1}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面內一動點與兩定點
和
連線的斜率之積等于
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)設直線:
(
)與軌跡
交于
、
兩點,線段
的垂直平分線交
軸于點
,當
變化時,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為自然對數的底數.
(1)函數的圖象能否與
軸相切?若能與
軸相切,求實數
的值;否則,請說明理由;
(2)若函數在
上單調遞增,求實數
能取到的最大整數值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知多面體的底面
是邊長為2的正方形,
底面
,
,且
.
(Ⅰ)記線段的中點為
,在平面
內過點
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,F將初賽答卷成績(得分均為整數,滿分為100分)進行統計,制成如下頻率分布表.
分數(分數段) | 頻數(人數) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)決賽規則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎。如果前三道題都答錯,就不再答第四題。某同學進入決賽,每道題答對的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學恰好答滿4道題而獲得一等獎的概率;
②記該同學決賽中答題個數為,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com