【題目】某同學同時擲兩顆骰子,得到點數分別為a,b,則橢圓 =1(a>b>0)的離心率e>
的概率是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a、b的值;
(2)當a2=4b時,求函數f(x)+g(x)的單調區間,并求其在區間(﹣∞,﹣1)上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實數m的取值范圍;
(3)若f(x)≥nx對任意的實數x≥1成立,求實數n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷居民戶是否小康的一個重要指標是居民戶的年收入,某市從轄區內隨機抽取100個居民戶,對每個居民戶的年收入與年結余的情況進行分析,設第i個居民戶的年收入xi(萬元),年結余yi(萬元),經過數據處理的: =400,
=100,
=900,
=2850.
(1)已知家庭的年結余y對年收入x具有線性相關關系,求線性回歸方程;
(2)若該市的居民戶年結余不低于5萬,即稱該居民戶已達小康生活,請預測居民戶達到小康生活的最低年收入應為多少萬元? 附:在y=bx+a中,b= ,a=
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的一個頂點為A(0,1),離心率為
,過點B(0,﹣2)及左焦點F1的直線交橢圓于C,D兩點,右焦點設為F2 .
(1)求橢圓的方程;
(2)求△CDF2的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x2+ax﹣ 在(
,+∞)是增函數,則a的取值范圍( )
A.(﹣∞,3]
B.(﹣∞,﹣3]
C.[﹣3,+∞)
D.(﹣3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當x=
時,函數取得最大值4. (Ⅰ)求函數 f(x)的解析式;
(Ⅱ)求函數f(x)的單調遞增區間;
(Ⅲ)若當x∈[ ,
]時,方程f(x)=m+1有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求點D到平面ACE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數圖象上不同兩點
,
處切線的斜率分別是
,
,規定
(
為線段
的長度)叫做曲線
在點
與
之間的“彎曲度”,給出以下命題:
①函數圖象上兩點
與
的橫坐標分別為1和2,則
;
②存在這樣的函數,圖象上任意兩點之間的“彎曲度”為常數;
③設點,
是拋物線
上不同的兩點,則
;
④設曲線(
是自然對數的底數)上不同兩點
,
,且
,若
恒成立,則實數
的取值范圍是
.
其中真命題的序號為__________.(將所有真命題的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com