【題目】已知拋物線與直線
相切于點
,點
與
關于
軸對稱.
(1)求拋物線的方程及點
的坐標;
(2)設是
軸上兩個不同的動點,且滿足
,直線
、
與拋物線
的另一個交點分別為
,試判斷直線
與直線
的位置關系,并說明理由.如果相交,求出的交點的坐標.
【答案】(1),
;(2)
∥
,詳見解析.
【解析】
(1)聯立方程組,整理得,根據
,求得
,得到拋物線
的方程,進而得到點
的坐標,從而求得點
的坐標.
(2)設,直線
的方程為
,得出
的方程為
,
代入,求得
,進而得到
,代入拋物線的方程求得
的坐標,利用斜率公式,即可得到結論.
(1)由題意,拋物線與直線
相切于點
,
聯立方程組,消去
,得
,
所以,解得
或
,
又,解得
,所以拋物線
的方程為
,
由,得
,所以切點為
,
因為點與
關于
軸對稱,點
的坐標
.
(2)直線,理由如下:
依題意,直線的斜率不為
,
設,直線
的方程為
,
由(1)知點,則
,所以直線
的方程為
,
代入,解得
(舍)或
,所以
,
因為,所以
關于
對稱,得
,
同理得的方程為
,代入
,
得,
,
直線的斜率為
,因此
.
科目:高中數學 來源: 題型:
【題目】已知圓與橢圓
相交于點M(0,1),N(0,-1),且橢圓的離心率為
.
(1)求的值和橢圓C的方程;
(2)過點M的直線交圓O和橢圓C分別于A,B兩點.
①若,求直線
的方程;
②設直線NA的斜率為,直線NB的斜率為
,問:
是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設雙曲線的左頂點為D,且以點D為圓心的圓
與雙曲線C分別相交于點A、B,如圖所示.
(1)求雙曲線C的方程;
(2)求的最小值,并求出此時圓D的方程;
(3)設點P為雙曲線C上異于點A、B的任意一點,且直線PA、PB分別與x軸相交于點M、N,求證:為定值(其中O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
,且
與短軸兩端點的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點
,
,橢圓
上存在兩個點
滿足:
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設點,直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發生在胡夫金字塔上的數字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經古代能工巧匠建設完成后,底座邊長大約230米.因年久風化,頂端剝落10米,則胡夫金字塔現高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的短軸長為2,離心率為
,左頂點為A,過點A的直線l與C交于另一個點M,且與直線x=t交于點N.
(1)求橢圓C的方程;
(2)是否存在實數t,使得為定值?若存在,求實數t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com