精英家教網 > 高中數學 > 題目詳情
判斷下列函數的奇偶性
(A)f(x)=
0(x為無理數)
1(x為有理數)
______;
(B)f(x)=ln(
1+x2
-x)
______;
(C)f(x)=
1+sinx-cosx
1+sinx+cosx
______;
(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)______.
(A)根據奇偶性的判別方法得到非奇非偶;
(B)因為f(-x)=ln(
1+(-x)2
+x)=ln
1
1+x2
-x
=-ln(
1+x2
-x)=-f(x),所以函數為奇函數;
(C)因為f(-x)=
1-sinx-cosx
1-sinx+cosx
≠±f(x),所以函數非奇非偶;
(D)因為f(-x)=
-x
a-x-1
-
x
2
≠±f(x),所以函數非奇非偶.
故答案為A、非奇非偶,B、奇函數,C、非奇非偶,D、非奇非偶.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

判斷下列函數的奇偶性
(A)f(x)=
0(x為無理數)
1(x為有理數)
 
;
(B)f(x)=ln(
1+x2
-x)
 
;
(C)f(x)=
1+sinx-cosx
1+sinx+cosx
 
;
(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)
 

查看答案和解析>>

科目:高中數學 來源: 題型:

判斷下列函數的奇偶性.
(1)y=lg
tanx+1
tanx-1
;
(2)f(x)=lg(sinx+
1+sin2x
)

查看答案和解析>>

科目:高中數學 來源: 題型:

判斷下列函數的奇偶性
(1)y=x4+
1x2
;        。2)f(x)=|x-2|-|x+2|

查看答案和解析>>

科目:高中數學 來源: 題型:

判斷下列函數的奇偶性,并說明理由.
(1)f(x)=
1-x2
|x+3|-3
;  (2)f(x)=x2-|x-a|+2(a∈R).

查看答案和解析>>

科目:高中數學 來源: 題型:

判斷下列函數的奇偶性,并證明:
(1)f(x)=x+
1x
           (2)f(x)=x4-1.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视