【題目】已知.
(Ⅰ)討論函數的單調性;
(Ⅱ)若函數在
上有最小值,且最小值為
,滿足
,求實數
的取值范圍.
【答案】(I) 函數在
單調遞減,在
單調遞增;(Ⅱ)
.
【解析】試題分析:(1)求出函數的導數,通過討論的范圍,分別令
得增區間,
得減區間;(2)結合(1)可得
的范圍,得到函數的單調區間,求出函數
在
上有最小值,從而確定
的范圍即可.
試題解析:(Ⅰ)∵f'(x)=ex-2a.
當a≤0時,f'(x)>0,f(x)在R上單調遞增;
當a>0時,令f'(x)=0,得x=ln2a.
列表得
x | (-∞,ln2a) | ln2a | (1n2a,+∞) |
f'(x) | - | 0 | + |
f(x) |
所以函數f(x)在(-∞,ln2a)單調遞減,在(ln2a,+∞)單調遞增.
(Ⅱ)由(Ⅰ)可知,當a>0時,f(x)有最小值,且在x=ln2a時取到最小值,
∴ln2a>0,∴.
∵f(x)min=f(ln2a)=2a-2aln2a+1,
∴g(a)=2a-2aln2a+1≤3-2ln2,即2a-2aln2a-2+2ln2≤0.
令t=2a,t>1,∴t-tlnt-2+2ln2≤0.
記φ(t)=t-tlnt-2+2ln2,φ'(t)=-lnt<0.
∴φ(t)在(1,+∞)上單調遞減,又∵φ(2)=0,∴φ(t)≤0時t≥2,即a≥1.
所以a的取值范圍是a≥1.
【方法點晴】本題主要考查的是利用導數研究函數的單調性、利用導數研究函數的最值、,屬于難題.利用導數研究函數的單調性進一步求函數最值的步驟:①確定函數
的定義域;②對
求導;③令
,解不等式得
的范圍就是遞增區間;令
,解不等式得
的范圍就是遞減區間;④根據單調性求函數
的極值及最值(閉區間上還要注意比較端點處函數值的大小).
科目:高中數學 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用、
、
三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數據統計如表:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數 |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬實驗的統計數據:
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態,乙地必須是大雨才達到理想狀態,丙地只能是小雨或中雨即達到理想狀態,記“甲、乙、丙三地中達到理想狀態的個數”為隨機變量,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的新產品必須先靠廣告打開銷路,該產品廣告效應y(單位:元)是產品的銷售額與廣告費x(單位:元)之間的差,如果銷售額與廣告費x的算術平方根成正比,根據對市場的抽樣調查,每付出100元的廣告費,所得銷售額是1000元. (Ⅰ)求出廣告效應y與廣告費x之間的函數關系式;
(Ⅱ)該企業投入多少廣告費才能獲得最大的廣告效應?是不是廣告費投入越多越好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】王明參加某衛視的闖關活動,該活動共3關.設他通過第一關的概率為0.8,通過第二、第三關的概率分別為p,q,其中,并且是否通過不同關卡相互獨立.記ξ為他通過的關卡數,其分布列為:
ξ | 0 | 1 | 2 | 3 |
P | 0.048 | a | b | 0.192 |
(Ⅰ)求王明至少通過1個關卡的概率;
(Ⅱ)求p,q的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的右焦點為F,右頂點為A,設離心率為e,且滿足
,其中O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是指由企業在校園、公交站點、商業區、公共服務區等場所提供的自行車單車共享服務,由于其依托“互聯網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(1) 求圖中的值;
(2) 已知滿意度評分值在[90,100]內的男生數與女生數的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在[﹣2,2]上的奇函數f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上單調遞增,且f(m)+f(m﹣1)>0,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com