精英家教網 > 高中數學 > 題目詳情
(2013•韶關二模)函數y=sin2(x+
π
4
)-cos2(x+
π
4
)
是(  )
分析:函數解析式提取-1,利用二倍角的余弦函數公式化簡后,找出ω的值,代入周期公式即可求出函數的最小正周期,并利用奇偶性質判斷即可得到結果.
解答:解:y=-cos(2x+
π
2
)=sin2x,
∵ω=2,∴T=π,
∵sin(-2x)=-sin2x,
則函數y為周期為π的奇函數.
故選A
點評:此題考查了二倍角的余弦函數公式,以及三角函數的周期性及其求法,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•韶關二模)函數f(x)=lnx-
1
x-1
的零點的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關二模)在極坐標系中,過點A(1,-
π2
)引圓ρ=8sinθ的一條切線,則切線長為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關二模)若a,b∈R,i為虛數單位,且(a+i)i=b+
5
2-i
,則a+b=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關二模)設點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點,其中F1,F2分別是雙曲線的左、右焦點,若tan∠PF2F1=3,則雙曲線的離心率為
10
2
10
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關二模)已知橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左右焦點為F1,F2,拋物線C:y2=2px以F2為焦點且與橢圓相交于點M(x1,y1)、N(x2,y2),點M在x軸上方,直線F1M與拋物線C相切.
(1)求拋物線C的方程和點M、N的坐標;
(2)設A,B是拋物線C上兩動點,如果直線MA,MB與y軸分別交于點P,Q.△MPQ是以MP,MQ為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视