精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2x-1的反函數為f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范圍D;
(2)設H(x)=g(x)-
12
f-1(x)
,當x∈D(D為(1)中所求)時函數H(x)的圖象與直線y=a有公共點,求實數a的取值范圍.
分析:(1)先根據反函數的概念求出:f-1(x)=log2(x+1)再由log2(x+1)≤log4(3x+1),利用對數函數的單調性轉化為關于x的一元不等式組,解之即可.   
(2)先化簡得到:H(x)=
1
2
log2(3-
2
x+1
)
再利用當x∈[0,1]時,3-
2
x+1
單調遞增,從而求得實數a的取值范圍.
解答:解:(1)f-1(x)=log2(x+1),…(3分)       
由log2(x+1)≤log4(3x+1),∴
x+1>0
3x+1>0
(x+1)2≤3x+1
….(6分)    
解得0≤x≤1,∴D=[0,1]---.(8分)
(2)H(x)=log4(3x+1)-
1
2
log2(x+1)=
1
2
log2
3x+1
x+1
(0≤x≤1)
,…..(10分)
H(x)=
1
2
log2(3-
2
x+1
)
,…(12分)
當x∈[0,1]時,3-
2
x+1
單調遞增,
∴H(x)單調遞增,….(14分)
H(x)∈[0,
1
2
]
因此當a∈[0,
1
2
]
時滿足條件.  …(16分)
點評:本小題主要考查反函數、函數單調性的應用、不等式的解法等基礎知識,考查運算求解能力與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、設函數f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

給定實數a(a≠
12
),設函數f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數y=f′(x)的單調區間;
(Ⅱ)對于所有整數a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2x+x-4,則方程f(x)=0一定存在根的區間為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
-2x+m2x+n
(m、n為常數,且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數f(x)不是奇函數;
(Ⅱ)若f(x)是奇函數,求出m、n的值,并判斷此時函數f(x)的單調性.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视