【題目】已知函數y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數,當x<2時,f(x)=|2x﹣1|,那么當x>2時,函數f(x)的遞減區間是( )
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]
【答案】D
【解析】解:∵y=f(x+2)是偶函數,∴f(﹣x+2)=f(x+2),
則函數f(x)關于x=2對稱,
則f(x)=f(4﹣x).
若x>2,則4﹣x<2,
∵當x<2時,f(x)=|2x﹣1|,
∴當x>2時,f(x)=f(4﹣x)=|24﹣x﹣1|,
則當x≥4時,4﹣x≤0,24﹣x﹣1≤0,
此時f(x)=|24﹣x﹣1|=1﹣24﹣x=1﹣16 ,此時函數遞增,
當2<x≤4時,4﹣x>0,24﹣x﹣1>0,
此時f(x)=|24﹣x﹣1|=24﹣x﹣1=16 ﹣1,此時函數遞減,
所以函數的遞減區間為(2,4],
所以答案是:D.
【考點精析】通過靈活運用函數奇偶性的性質和奇偶性與單調性的綜合,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇;奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知結論:“在正三角形ABC中,若D是邊BC的中點,G是三角形ABC的重心,則 ”,若把該結論推廣到空間,則有結論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內部一點O到四面體各面的距離都相等,則
=( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】奇函數f(x)在(0,+∞)內單調遞增且f(2)=0,則不等式 的解集為( )
A.(﹣∞,﹣2)∪(0,1)∪(1,2)
B.(﹣2,0)∪(1,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣2)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
(1)求m﹣n的值;
(2)若A∪B=A,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣
的定義域為集合A,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= +lg(x﹣1)+(x﹣3)0 的定義域為( )
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com