已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
、
(
,
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
(1),(2)
,(3)
.
解析試題分析:(1)本題橢圓方程的求法是軌跡法.這是由于題目沒有明確直線是左準線,點
是左焦點.不可利用待定系數法求解. 設
,則
,
,化簡得:
橢圓C的方程為:
,(2)條件中角的關系一般化為斜率,利用坐標進行求解. 因為
,所以
,由題意得
,
,可求與橢圓交點
,從而可得直線
方程
(3)直線過定點問題,一般先表示出直線,
,利用等量關系將兩元消為一元.
,代入
得:
,
.化簡得
,直線
方程:
直線
總經過定點
解:(1)設,則
, (2分)
化簡得:
橢圓C的方程為:
(4分)
(2),
,
(3分)
代入得:
,
,代入
得
,
(5分)
, (6分)
(3)解法一:由于,
。 (1分)
設
設直線方程:
,代入
得:
(3分)
, (5分)
直線方程:
直線
總經過定點
(6分)
解法二:由于,所以
關于x軸的對稱點
在直線
上。
設
設直線方程:
,代入
科目:高中數學 來源: 題型:解答題
已知橢圓C:(
)的左焦點為
,離心率為
.
(1)求橢圓C的標準方程;
(2)設O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
經過點
,其離心率
.
(1)求橢圓的方程;
(2)過坐標原點作不與坐標軸重合的直線
交橢圓
于
兩點,過
作
軸的垂線,垂足為
,連接
并延長交橢圓
于點
,試判斷隨著
的轉動,直線
與
的斜率的乘積是否為定值?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設動點P滿足:=
+2
,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣
,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分13分)如圖,分別過橢圓:
左右焦點
、
的動直線
相交于
點,與橢圓
分別交于
不同四點,直線
的斜率
、
、
、
滿足
.已知當
軸重合時,
,
.
(1)求橢圓的方程;
(2)是否存在定點,使得
為定值.若存在,求出
點坐標并求出此定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是拋物線為
上的一點,以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點,連結并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右焦點分別為
,點
為短軸的一個端點,
.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為
的直線
與橢圓
相交于
兩點,
為橢圓的右頂點,直線
分別交直線
于點
,線段
的中點為
,記直線
的斜率為
.
求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線="1"
的兩個焦點為
、
,P是雙曲線上的一點,
且滿足 ,
(1)求的值;
(2)拋物線的焦點F與該雙曲線的右頂點重合,斜率為1的直線經過點F與該拋物線交于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,短軸端點分別為
.
(1)求橢圓的標準方程;
(2)若,
是橢圓
上關于
軸對稱的兩個不同點,直線
與
軸交于點
,判斷以線段
為直徑的圓是否過點
,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com