精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

某市某通訊設備廠為適應市場需求,提高效益,特投入98萬元引進世界先進設備奔月8號,并馬上投入生產.第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設備可獲得的年利潤為50萬元.

請你根據以上數據,解決下列問題:

(1)引進該設備多少年后,開始盈利?

(2)引進該設備若干年后,有兩種處理方案:

第一種:年平均盈利達到最大值時,以26萬元的價格賣出;

第二種:盈利總額達到最大值時,以8萬元的價格賣出.

問哪種方案較為合算?并說明理由.

 

【答案】

解:(1)設引進設備n年后開始盈利,盈利為y萬元,

則y=50n-(12n+×4)-98=-2n2+40n-98,由y>0,得10-<n<10+

 

∵n∈N*,∴3≤n≤17,即3年后開始盈利. …………………6分

(2)方案一:年平均盈利為,=-2n-+40≤-2+40=12,

 

當且僅當2n=,即n=7時,年平均利潤最大,共盈利12×7+26=110萬元.

 

方案二:盈利總額y=-2(n-10)2+102,n=10時,y取最大值102,

即經過10年盈利總額最大,

共計盈利102+8=110萬元.

兩種方案獲利相等,但由于方案二時間長,所以采用方案一合算.…………12分

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视