精英家教網 > 高中數學 > 題目詳情

【題目】已知函數).

(Ⅰ)當時,判斷函數的零點個數;

(Ⅱ)若,求的最大值.

【答案】1;(

【解析】試題分析:

(1)由導函數結合函數的極值可得函數內有且只有一個零點;

(2) 構造函數,

,不符合題意,討論 可得,

二次構造函數,結合函數的性質可得的最大值為.

試題解析:

(Ⅰ)當時, ,定義域為,

時, ,所以函數內無零點;

時, ,因為 ,所以,說明函數上單調遞減,又,當時, ,所以函數內有且只有一個零點;

綜上,函數的零點個數是1;

(Ⅱ)若,即,設

,則當時,顯然,故不符合題意,所以.

),

時, ,所以上單調遞增;

時, ,所以上單調遞減;

從而

由題意可知,所以,

此時,令, ,

可知上單調增,在上單調減,

所以,的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某手機賣場對市民進行國產手機認可度的調查,隨機抽取名市民,按年齡(單位:歲)進行統計和頻數分布表和頻率分布直線圖如下:

分組(歲)

頻數

合計

(1)求頻率分布表中、的值,并補全頻率分布直方圖;

(2)在抽取的這名市民中,按年齡進行分層抽樣,抽取人參加國產手機用戶體驗問卷調查,現從這人中隨機選取人各贈送精美禮品一份,設這名市民中年齡在內的人數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點.

(I)求證:PE⊥CD;

(II)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點, 為坐標原點,直線的斜率分別為,求直線被圓截得弦長的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大;
(2)證明AE⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個多面體的直觀圖,正(主)視圖,側(左)視圖如下所示,其中正(主)視圖、側(左)視圖為邊長為a的正方形.
(1)請在指定的框內畫出多面體的俯視圖;
(2)若多面體底面對角線AC,BD交于點O,E為線段AA1的中點,求證:OE∥平面A1C1C;
(3)求該多面體的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標是 , 半徑是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a>0).
(1)證明函數f(x)在(0,2]上是減函數,(2,+∞)上是增函數;
(2)若方程f(x)=0有且只有一個實數根,判斷函數g(x)=f(x)﹣4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视