【題目】對于函數,若
,則稱
為
的“不動點”,若
,則稱
為
的“穩定點”,函數
的“不動點”和“穩定點”的集合分別記為
和
,即
,
,那么,
(1)求函數的“穩定點”;
(2)求證:;
(3)若,且
,求實數
的取值范圍.
【答案】(1)“穩定點”為;(2)見解析;(3)
【解析】
本題拿出一個概念來作為新型定義題,只需要去對定義的理解就好,要求函數的“穩定點”只需求方程
中
的值,即為“穩定點”
若,有
這是不動點的定義,此時得出
,
,如果
,則直接滿足.
先求出即
存在“不動點”的條件,同理取得到存在“穩定點”的條件,而兩集合相等,即條件所求出的結果一直,對結果進行分類討論.
(1)由有
,得:
,所以函數
的“穩定點”為
;
(2)證明:若,則
,顯然成立;
若,設
,有
,則有
,
所以,故
(3)因為,所以方程
有實根,即
有實根,
所以或
,解得
又由
得:
即
由(1)知
,故方程
左邊含有因式
所以,又
,
所以方程要么無實根,要么根是方程
的解,
當方程無實根時,
或
,即
,
當方程有實根時,則方程
的根是方程
的解,
則有,代入方程
得
,故
,
將代入方程
,得
,所以
.
綜上:的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】某二手交易市場對某型號的二手汽車的使用年數(
)與銷售價格
(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
銷售價格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關于
的回歸直線方程
.
(參考公式:,
)
(II)已知每輛該型號汽車的收購價格為萬元,根據(I)中所求的回歸方程,預測
為何值時,銷售一輛該型號汽車所獲得的利潤
最大?(利潤=銷售價格-收購價格)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數API的監測數據,結果統計如下:
API | [0,100] | (100,200] | (200,300] | >300 |
空氣質量 | 優良 | 輕污染 | 中度污染 | 重度污染 |
天數 | 17 | 45 | 18 | 20 |
記某企業每天由空氣污染造成的經濟損失S(單位:元),空氣質量指數API為.當
時,企業沒有造成經濟損失;當
對企業造成經濟損失成直線模型(當
時造成的經濟損失為
,當
時,造成的經濟損失
);當
時造成的經濟損失為2000元;
(1)試寫出的表達式;
(2)若本次抽取的樣本數據有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯表,并判斷能否有99%的把握認為該市本年空氣重度污染與供暖有關?
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,側棱垂直于底面)的8個頂點都在球O的表面上,AB=1,AA1′=2,則球O的半徑R=;若E,F是棱AA1和DD1的中點,則直線EF被球O截得的線段長為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某跳水運動員在一次跳水訓練時的跳水曲線為如圖所示拋物線的一段.已知跳水板長為
,跳水板距水面
的高
為
.為安全和空中姿態優美,訓練時跳水曲線應在離起跳點
處水平距
時達到距水面最大高度
,規定:以
為橫軸,
為縱軸建立直角坐標系.
(1)當時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區域內入水時才能達到比較好的訓練效果,求此時
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別是棱A1B1 , B1C1的中點,O是AC與BD的交點,面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為( )
A.0
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com