精英家教網 > 高中數學 > 題目詳情

【題目】設f(x)是定義在實數集R上的函數,且y=f(x+1)是偶函數,當x1時,f(x)=2x﹣1,則f(),f(),f()的大小關系是( 。

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

【答案】A

【解析】

根據函數y=f(x+1)是偶函數得到函數關于x=1對稱,然后利用函數單調性和對稱之間的關系,進行比較即可得到結論.

∵y=f(x+1)是偶函數,

∴f(﹣x+1)=f(x+1),

即函數f(x)關于x=1對稱.

當x1時,f(x)=2x﹣1為增函數,

當x1時函數f(x)為減函數.

∵f()=f(+1)=f(﹣+1)=f(),且,

∴f()>f()>f(),

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】求使下列函數取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值:

(1)y=3-2sin x

(2)y=sin.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)是定義在(0,+∞)上的增函數,且對一切x,y>0,滿足

(1)求f(1)的值;

(2)若f(6)=1,解不等式f(x+3)-f()<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數的最小值為1,且

(1)求的解析式.

(2)在區間[-1,1]上,的圖象恒在的圖象上方,試確定實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題:若關于的方程無實數根,則;命題:若關于的方程有兩個不相等的正實數根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司生產一批A產品需要原材料500噸,每噸原材料可創造利潤12萬元.該公司通過設備升級,生產這批A產品所需原材料減少了x噸,且每噸原材料創造的利潤提高0.5x%;若將少用的x噸原材料全部用于生產公司新開發的B產品,每噸原材料創造的利潤為12(a﹣ x)萬元(a>0).
(1)若設備升級后生產這批A產品的利潤不低于原來生產該批A產品的利潤,求x的取值范圍.
(2)若生產這批B產品的利潤始終不高于設備升級后生產這批A產品的利潤,求a的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是三內角A,B,C所對應的三邊,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若 ,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(選修4﹣4:坐標系與參數方程)
已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的兩個焦點分別為, ,且點在橢圓.

1求橢圓的標準方程;

2設橢圓的左頂點為,過點的直線與橢圓相交于異于的不同兩點,求的面積的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视