精英家教網 > 高中數學 > 題目詳情
(2013•朝陽區一模)函數f(x)是定義在R上的偶函數,且滿足f(x+2)=f(x).當x∈[0,1]時,f(x)=2x.若在區間[-2,2]上方程ax+a-f(x)=0恰有三個不相等的實數根,則實數a的取值范圍是
[0,1)
[0,1)
分析:在區間[-2,2]上,函數f(x)與y=a(x+1)的圖象有三個不同的交點,由函數的性質可作出它們的圖象,由斜率公式可得邊界,進而可得答案.
解答:解:在區間[-2,2]上方程ax+a-f(x)=0恰有三個不相等的實數根,等價于在區間[-2,2]上,函數f(x)與y=a(x+1)的圖象有三個不同的交點,
由f(x+2)=f(x)可得函數的周期為2,且為偶函數,如圖所示:
由于直線y=a(x+1)過定點B(-1,0),當直線的斜率a=0時,滿足條件,當直線過點A(1,2)時,a=1,不滿足條件.
數形結合可得實數a的取值范圍是[0,1),
故答案為[0,1).
點評:本題考查方程根的存在性及個數的判斷,數形結合是解決問題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•朝陽區一模)已知函數f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及函數f(x)的單調遞增區間;
(Ⅱ)當x∈[0,
π
2
]
時,求函數f(x)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區一模)若直線y=x+m與圓x2+y2+4x+2=0有兩個不同的公共點,則實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區一模)盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數字-1,0,1,2.稱“從盒中隨機抽取一張,記下卡片上的數字后并放回”為一次試驗(設每次試驗的結果互不影響).
(Ⅰ)在一次試驗中,求卡片上的數字為正數的概率;
(Ⅱ)在四次試驗中,求至少有兩次卡片上的數字都為正數的概率;
(Ⅲ)在兩次試驗中,記卡片上的數字分別為ξ,η,試求隨機變量X=ξ•η的分布列與數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區一模)已知函數f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若函數f(x)在(0,2]上有且只有一個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•朝陽區一模)設τ=(x1,x2,…,x10)是數1,2,3,4,5,6,7,8,9,10的任意一個全排列,定義S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)達到最大值的所有排列τ的個數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视