【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
【答案】
(1)解:∵acosB=3,bcosA=l,∴a× =3,b×
=1,
化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得: =
=
,
又A﹣B= ,∴A=B+
,C=π﹣(A+B)=
,可得sinC=sin
.
∴a= ,b=
.
∴ ﹣16sin2B=
,
∴1﹣ ﹣(1﹣cos2B)=
,即cos2B﹣
=
,
∴﹣2
═
,
∴ =0或
=1,B∈
.
解得:B=
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得: =
=
,又A﹣B=
,可得A=B+
,C=
,可得sinC=sin
.代入可得
﹣16sin2B=
,化簡即可得出.
科目:高中數學 來源: 題型:
【題目】現如今,“網購”一詞不再新鮮,越來越多的人已經接受并喜歡了這種購物方式,但隨之也出現了商品質量不能保證與信譽不好等問題,因此,相關管理部門制定了針對商品質量與服務的評價體系,現從評價系統中選出成功交易200例,并對其評價進行統計:對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)依據題中的數據完成下表,并通過計算說明,能否有99.9%的把握認為“商品好評與服務好評”有關;
(2)若將頻率視為概率,某人在該購物平臺上進行了5次購物,設對商品和服務全好評的次數為隨機變量,求
的分布列(概率用算式表示)、數學期望和方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,三棱柱中,側面
底面
,
,且
,O為
中點.
(Ⅰ)證明: 平面
;
(Ⅱ)求直線與平面
所成角的正弦;
(Ⅲ)在上是否存在一點
,使得
平面
,若不存在,說明理由;若存在,確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心在直線
上,且與直線
相切于點
.
(1)求圓方程;
(2)是否存在過點的直線
與圓
交于
兩點,且
的面積是
(
為坐標原點),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的方程為+
=1,A、B為橢圓C的左、右頂點,P為橢圓C上不同于A、B的動點,直線x=4與直線PA、PB分別交于M、N兩點;若D(7,0),則過D、M、N三點的圓必過x軸上不同于點D的定點,其坐標為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (a>0且a≠1)是定義在R上的奇函數. (Ⅰ) 求實數a的值;
(Ⅱ) 證明函數f(x)在R上是增函數;
(Ⅲ)當x∈[1,+∞)時,mf(x)≤2x﹣2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:直線PB1⊥平面PAC.
(3)求三棱錐B﹣PAC的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com