【題目】若三棱錐的四個面都為直角三角形,
平面
,
,
,則三棱錐
中最長的棱長為( )
A.B.
C.
D.
【答案】B
【解析】
根據題意,畫出滿足題意的三棱錐,求解棱長即可.
因為平面
,故
,且
,
則為直角三角形,由
以及勾股定理得:
;
同理,因為則為直角三角形,由
,
以及勾股定理得:
;
在保證和
均為直角三角形的情況下,
①若,則在
中,由勾股定理得:
,
此時在中,由
,
及
,
不滿足勾股定理
故當時,無法保證
為直角三角形.
不滿足題意.
②若,則
,
又因為面ABC,
面ABC,則
,
故面PAB,又
面PAB,故
,
則此時可以保證也為直角三角形.滿足題意.
③若,在直角三角形BCA中,
斜邊AB=2,小于直角邊AC=,顯然不成立.
綜上所述:當且僅當時,可以保證四棱錐
的四個面均為直角三角形,故作圖如下:
由已知和勾股定理可得:
,
顯然,最長的棱為.
故選:B.
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,
是
的中點.
(1)求證:平面
;
(2)求證:平面平面
.(只需在下面橫線上填寫給出的如下結論的序號:①
平面
,②
平面
,③
,④
,⑤
)
證明:(1)設,連接
.因為底面
是正方形,所以
為
的中點,又
是
的中點,所以_________.因為
平面
,____________,所以
平面
.
(2)因為平面
平面
,所以___________,因為底面
是正方形,所以_______,又因為
平面
平面
,所以_________.又
平面
,所以平面
平面
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60][60,70][70,80][80,90][90,100].
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數段的人數(x)與數學成績相應分數段的人數(y)之比如下表所示,求數學成績在[50,90)之外的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數據補充完整,填寫在相應位置,并求出函數的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移
個單位長度,得到函數
的圖象,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com