精英家教網 > 高中數學 > 題目詳情

【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;

③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;

④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;

⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.

抽獎活動的組織者記錄了該超市前20位顧客的購物消費數據(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎機會的人數與抽獎總次數(假定每位獲得抽獎機會的顧客都會去抽獎);

(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數據的中位數與平均數(結果精確到整數部分);

(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.

【答案】(1)14(2)131(3)見解析

【解析】試題分析:(1)先計算這20位顧客中獲得抽獎機會的人數,再計算抽獎總次數,(2)根據平均數定義求平均數,從數據確定中位數,(3)先確定所有結果數,再根據古典概型概率公式確定對應概率.

試題解析:解:(1)這20位顧客中獲得抽獎機會的人數為5+3+2+1=11.

這20位顧客中,有8位顧客獲得一次抽獎的機會,有3位顧客獲得兩次抽獎的機會,故共有14次抽獎機會.

(2)獲得抽獎機會的數據的中位數為110,

平均數為 .

(3)記抽獎箱里的2個紅球為紅1,紅2,從箱中隨機取2個小球的所有結果為(紅1,紅2),(紅1,藍),(紅1,黃),(紅2,藍),(紅2,黃),(藍,黃),共有6個基本事件.

在一次抽獎中獲得紅包獎金10元的概率為

獲得5元的概率為,

獲得2元的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,當時,的極大值為;當時,有極小值。求:

1的值;

2)函數的極小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點,兩個焦點分別為.

1)求橢圓的方程;

2)過的直線與橢圓相交于兩點,若的內切圓半徑為,求以為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,直線與平面和平面分別交于點G,H.

求證:點G,H是線段的三等分點;

在棱上是否存在點M,使得二面角的大小為?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年,南昌市召開了全球VR產業大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優秀和非優秀兩類,統計兩類成績人數得到如下的列聯表:

優秀

非優秀

總計

男生

a

35

50

女生

30

d

70

總計

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認為VR知識的測試成績優秀與否與性別有關;

(3)為了宣傳普及VR知識,從該校測試成績獲得優秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數對定義域內的每一個值,在其定義域內都存在唯一的,使成立,則稱該函數為“函數”.

1)判斷函數是否為“函數”,并說明理由;

2)若函數在定義域上是“函數”,求的取值范圍;

3)已知函數在定義域上為“函數”.若存在實數,使得對任意的,不等式都成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為

1)求頻率分布直方圖中的值;

2)估計該企業的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年1月6日北京時間上午11時30分,朝鮮中央電視臺宣布“成功進行了氫彈試驗”,再次震動世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某聊天群有300名網友,烏魯木齊市某微信群有200名網友,為了解不同地區我國公民對“氫彈試驗”事件的關注程度,現采用分層抽樣的方法,從中抽取了100名網友,先分別統計了他們在某時段發表的信息條數,再將兩地網友發表的信息條數分成5組:,分別加以統計,得到如圖所示的頻率分布直方圖.

(1)求丹東市網友的平均留言條數(保留整數);

(2)為了進一步開展調查,從樣本中留言條數不足50條的網友中隨機抽取2人,求至少抽到一名烏魯木齊市網友的概率;

(3)規定“留言條數”不少于70條為“強烈關注”.

①請你根據已知條件完成下列的列聯表:

強烈關注

非強烈關注

合計

丹東市

烏魯木齊市

合計

②判斷是否有的把握認為“強烈關注”與網友所在的地區有關?

附:臨界值表及參考公式:

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲乙兩個班級進行數學考試,按照大于等于85分為優秀,85分以下為非優秀統計成績后,得到如圖的列聯表. 已知在全部105人中隨機抽取一人為優秀的概率為.

(1)請完成上面的列聯表;

(2)根據列聯表的數據,若按的可靠性要求,能否認為“成績與班級有關系”;

(3)若按下面的方法從甲班優秀的學生抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號.試求抽到8或9號的概率.

參考公式和數據:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视