精英家教網 > 高中數學 > 題目詳情

【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(單位:千冊)之間的關系,在印制某種書籍時進行了統計,相關數據見下表:

印刷冊數(千冊)

2

3

4

5

8

單冊成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務.

①完成下表(計算結果精確到0.1);

印刷冊數(千冊)

2

3

4

5

8

單冊成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據市場調查,新需求量為8千冊(概率0.8)或10千冊(概率0.2),若印刷廠以每冊5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)

【答案】(1)模型乙的擬合效果更好;(2)印刷8千冊對印刷廠更有利.

【解析】試題分析: 1根據題意,分別計算模型甲和乙的估計值與殘差值,填出表格; ,故模型乙的擬合效果更好;(2)設新需求量為(千冊),印刷廠利潤為(元),列出分布列,分別求出期望值比較大小,判斷出印刷8千冊印刷廠能獲得更多利潤.

試題解析:解:(1)①經計算,可得下表:

印刷冊數(千冊)

2

3

4

5

8

單冊成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

3.1

2.4

2.1

1.9

1.6

殘差

0.1

0

-0.1

0

0.1

模型乙

估計值

3.2

2.3

2

1.9

1.7

殘差

0

0.1

0

0

0

,故模型乙的擬合效果更好;

(2)若二次印刷8千冊,則印刷廠獲利為(元),

若二次印刷10千冊,由(1)可知,單冊書印刷成本為(元)

故印刷總成本為16640(元),

設新需求量為(千冊),印刷廠利潤為(元),則

8

10

0.8

0.2

,

,

故印刷8千冊對印刷廠更有利.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】求滿足下列條件的直線方程:
(1)求經過直線l1:x+3y﹣3=0,l2:x﹣y+1=0的交點,且平行于直線2x+y﹣3=0的直線l方程;
(2)求在兩坐標軸上截距相等,且與點A(3,1)的距離為的直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次期末數學測試中,唐老師任教任教班級學生的成績情況如下所示:

(1)根據上述表格,試估計唐老師所任教班級的學生在本次期末數學測試的平均成績;

(2)現從成績在中按照分數段,采取分層抽樣隨機抽取人,再在這人中隨機抽取人作小題得分分析,求恰有人的成績在上的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設雙曲線x2 =1的左、右焦點分別為F1、F2 , 若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知直線(其中為參數, 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的直角坐標方程,并求的焦點的直角坐標;

(2)已知點,若直線相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數與本店所需原材料數量的關系,在交易會前查閱了最近5次交易會的參會人數(萬人)與餐廳所用原材料數量(袋),得到如下數據:

(Ⅰ)請根據所給五組數據,求出關于的線性回歸方程;

(Ⅱ)若該店現有原材料12袋,據悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應至少再補充原材料多少袋?

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的函數,滿足f(x)=﹣f(﹣x),且當x<0時,f(x)=x ,則f(9)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內接于圓O,且AB為圓O的直徑,點M為線段PB的中點.現有以下命題:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中真命題的個數為(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有下列五個命題: ①平面內,到一定點的距離等于到一定直線距離的點的集合是拋物線;
②平面內,定點F1、F2 , |F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , 是空間的一個基底,則向量 + , 也是空間的一個基底.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视