【題目】在平面直角坐標系中,已知直線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設點,直線
與曲線
的交點為
、
,求
的值.
科目:高中數學 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發芽的多少之間的關系,在不同的溫差下統計了100顆小麥種子的發芽數,得到了如下數據:
溫差 | 8 | 10 | 11 | 12 | 13 |
發芽數 | 79 | 81 | 85 | 86 | 90 |
(1)請根據統計的最后三組數據,求出關于
的線性回歸方程
;
(2)若由(1)中的線性回歸方程得到的估計值與前兩組數據的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發芽率為顆,則記為
的發芽率,當發芽率為
時,平均每畝地的收益為
元,某農場有土地10萬畝,小麥種植期間晝夜溫差大約為
,根據(1)中得到的線性回歸方程估計該農場種植小麥所獲得的收益.
附:在線性回歸方程中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓經過定點,且與定直線
相切.
(1)求動圓圓心的軌跡方程
;
(2)已知點,過點
作直線
與
交于
,
兩點,過點
作
軸的垂線分別與直線
,
交于點
,
(
為原點),求證:
為線段
中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數據,其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔任班主任的教師月平均通話時長的中位數;
(3)在,
這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的中心在原點,其左焦點與拋物線
的焦點重合,過
的直線
與橢圓交于
、
兩點,與拋物線交于
、
兩點.當直線
與
軸垂直時,
.
(1)求橢圓的方程;
(2)求的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
)在
上至少存在兩個不同的
,
滿足
,且
在
上具有單調性,點
和直線
分別為
圖象的一個對稱中心和一條對稱軸,則下列命題中正確的是( )
A.的最小正周期為
B.
C.在
上是減函數
D.將圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),得到
的圖象,則
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com