精英家教網 > 高中數學 > 題目詳情

【題目】已知圓經過,兩點,且圓心在直線.

1)求圓的方程;

2)從軸上一個動點向圓作切線,求切線長的最小值及對應切線方程.

【答案】1;(2.

【解析】

1)設圓的方程為,根據題設條件,列出方程組,求得的值,即可求得圓的方程;

2)利用圓的切線長公式,結合直線與圓的位置關系,分類討論,即可求解.

1)設圓的方程為,

由圓經過,兩點,

可得, ……,……

又由圓心在直線上,即,……

由①②③,可解得,,,

所以圓的方程為:,

即圓的方程.

2)對于動點,設切線長為,則,

所以要使得切線長最短,必須且只需最小即可,

最小值為圓心軸的距離,此時距離為2,

故切線長的最小值為,當切線長取最小值時,對應點為原點,

過原點的直線中,當斜率不存在時,不與圓相切;

當斜率存在時,設直線方程為,

代入圓,可得,即,

,解得,

故切線方程為,此時切線長為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知為數列的前項和,,,平面內三個不共線的向量,滿足,若點,,在同一直線上,則______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面是菱形.

1)若,求證:平面

2,分別是,上的點,若平面,,求的值;

3)若,平面平面,判斷是否為等腰三角形?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若,求曲線在點處的切線;

2)若函數在其定義域內為增函數,求正實數的取值范圍;

3)設函數,若在上至少存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列說法:①方程表示的圖形是一個點;②命題,則為真命題;③已知雙曲線的左右焦點分別為,過右焦點被雙曲線截得的弦長為4的直線有3條;④已知橢圓上有兩點,若點是橢圓上任意一點,且,直線,的斜率分別為,,則為定值;⑤已知命題滿足,是真命題,則實數.其中說法正確的序號是__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[2019·清遠期末]一只紅鈴蟲的產卵數和溫度有關,現收集了4組觀測數據列于下表中,根據數據作出散點圖如下:

溫度

20

25

30

35

產卵數/個

5

20

100

325

(1)根據散點圖判斷哪一個更適宜作為產卵數關于溫度的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程(數字保留2位小數);

(3)要使得產卵數不超過50,則溫度控制在多少以下?(最后結果保留到整數)

參考數據:,,,,,,

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,分別是、的中點.

)證明:平面

)若這個三棱柱的底面是等邊三角形,側面都是正方形,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了引導居民合理用水,某市決定全面實施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機抽取了10戶家庭,統計了同一月份的月用水量,得到如圖莖葉圖:

(Ⅰ)現要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數X的分布列與數學期望;

(Ⅱ)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到戶月用水量為一階的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面,,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视