精英家教網 > 高中數學 > 題目詳情

已知數列{an}為等差數列,且a1+a2n-1=2n,Sn為數列{數學公式}的前n項和,設f(n)=S2n-Sn,
(1)比較f(n)與f(n+1)的大。
(2)若g(x)=log2x-12f(n)<0,在x∈[a,b]且對任意n>1,n∈N*恒成立,求實數a,b滿足的條件.

解:(1)∵數列{an}為等差數列,且a1+a2n-1=2n,令n=1可得 a1 =1,再令n=2可得a2=2,故 an=n.
f(n+1)-f(n)=S2(n+1)-Sn+1-[S2n-Sn]=S2(n+1)-S2n-(Sn+1-Sn
=a2n+2+a2n+1-an+1=-=>0,
∴f(n+1)>f(n).(6分)
(2)由上知:{ f(n)}為遞增數列,必需 log2x<12 f(2)成立.(8分)
∵f(2)=S4-S2=,∴log2x<7,
∴0<x<128,∴0<a<b<128.
分析:(1)由條件求出a1 =1,a2=2,可得an=n.化簡f(n+1)-f(n)=>0,可得f(n+1)>f(n).
(2)由上知:{ f(n)}為遞增數列,必需 log2x<12 f(2)成立,求出f(2)=,可得log2x<7,求得0<x<128,
由此確定實數a,b滿足的條件.
點評:本題主要考查等差數列的定義和性質,數列與函數的綜合,函數的恒成立問題,體現了等價轉化的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2013等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0,且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2011等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出“等和數列”的定義:從第二項開始,每一項與前一項的和都等于一個常數,這樣的數列叫做“等和數列”,這個常數叫做“公和”.已知數列{an}為等和數列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數學 來源:2012--2013學年河南省高二上學期第一次考試數學試卷(解析版) 題型:選擇題

.定義:在數列{an}中,an>0且an≠1,若為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视