精英家教網 > 高中數學 > 題目詳情

【題目】全國大學生機器人大賽是由共青團中央,全國學聯,深圳市人民政府聯合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態度,展現的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰隊踴躍報名,這些參賽戰隊來自全國六大賽區,150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內頂尖高校,經過嚴格篩選,最終由111支機器人戰隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優秀團隊,現用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰機器人大賽.

(i)從統計學數據看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團隊中任取兩個團隊,求至少有一個團隊為144分的概率.

【答案】(1)6個(2)(i)選乙隊理由: ,且乙隊中不低于140分的團隊多,在競技比賽中,高分團隊獲勝的概率大(ii)

【解析】試題分析:

1)由題意可知大三團隊個數占總團隊數的,則應從大三中抽取個團隊.

2)(i)分別計算甲乙兩組數據的平均值和方差, , , ,由于可知選擇甲組有利,成績波動。挥捎,可知選擇乙組有利,在競技比賽中,高分團隊獲勝的概率大.

ii)不低于140分的團隊共5個,其中140分的團隊有3個,144分的團隊有2個,據此可得任取兩個的情況有10個,其中兩個團隊都是140分的情況有3個,由對立事件概率公式可得至少有一個團隊為144分的概率為.

試題解析:

1)由題知,大三團隊個數占總團隊數的,

則用分層抽樣的方法,應從大三中抽取個團隊.

2)(i)甲組數據的平均數,乙組數據的平均數,

甲組數據的方差,乙組數據的方差,

選甲隊理由:甲、乙兩隊平均數相差不大,且,甲組成績波動小.

選乙隊理由: ,且乙隊中不低于140分的團隊多,在競技比賽中,高分團隊獲勝的概率大.

ii)不低于140分的團隊共5個,其中140分的團隊有3個,分別為, , ,144分的團隊有2個,分別為,

則任取兩個的情況有, , , , , , ,共10個,

其中兩個團隊都是140分的情況有, ,共3.

故所求概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】0, 1, 2, 3, 4, 5這六個數字, 可以組成______個無重復數字的三位數, 也可以組成______個能被5整除且無重復數字的五位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】Monte-Carlo方法在解決數學問題中有廣泛的應用.下面利用Monte-Carlo方法來估算定積分.考慮到等于由曲線軸,直線所圍成的區域的面積,如圖,在外作一個邊長為1正方形OABC.在正方形OABC內隨機投擲n個點,若n個點中有m個點落入M中,則M的面積的估計值為,此即為定積分的估計值.現向正方形OABC中隨機投擲10000個點,以X表示落入M中的點的數目.

(1)求X的期望和方差;

(2)求用以上方法估算定積分時,的估計值與實際值之差在區間(-0.01,0.01)的概率.

附表:

1899

1900

1901

2099

2100

2101

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率,過點、分別作兩平行直線、, 與橢圓相交于、兩點, 與橢圓相交于、兩點,且當直線過右焦點和上頂點時,四邊形的面積為.

(1)求橢圓的標準方程;

(2)若四邊形是菱形,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為橢圓的左、右頂點, 為其右焦點, 是橢圓上異于的動點,且面積的最大值為.

(1)求橢圓的方程;

(2)直線與橢圓在點處的切線交于點,當點在橢圓上運動時,求證:以 為直徑的圓與直線恒相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設復數z=2m+4-m2i,其中i為虛數單位,當實數m取何值時,復數z對應的點:

1)位于虛軸上;

2)位于一、三象限;

3)位于以原點為圓心,以4為半徑的圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓Γ 的右焦點為F,過點F且斜率為k的直線與橢圓Γ交于A(x1, y1)、B(x2, y2)兩點(Ax軸上方),點A關于坐標原點的對稱點為P,直線PAPB分別交直線lx=4M、N兩點,記M、N兩點的縱坐標分別為yM、yN

(1) 求直線PB的斜率(k表示);

(2) 求點M、N的縱坐標yM、yN (x1, y1表示) ,并判斷yM yN是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于下列命題:

①若是第一象限角,且,則;

②函數是偶函數;

③函數的一個對稱中心是;

④函數上是增函數,

所有正確命題的序號是_____

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视