精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過拋物線C上一點H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點,分別交拋物線為E、F兩點,圓心點M到拋物線準線的距離為
(Ⅰ)求拋物線C的方程;
(Ⅱ)當∠AHB的角平分線垂直x軸時,求直線EF的斜率;
(Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.

【答案】解:(Ⅰ)∵點M到拋物線準線的距離為 = ,
,∴拋物線C的方程為y2=x.
(Ⅱ)法一:∵當∠AHB的角平分線垂直x軸時,點H(4,2),∴kHE=﹣kHF
設E(x1 , y1),F(x2 , y2),∴ ,∴
∴y1+y2=﹣2yH=﹣4.

法二:∵當∠AHB的角平分線垂直x軸時,點H(4,2),∴∠AHB=60°,可得 ,
∴直線HA的方程為 ,
聯立方程組 ,得 ,


同理可得 , ,∴ .(
(Ⅲ)法一:設A(x1 , y1),B(x2 , y2),∵ ,∴
∴直線HA的方程為(4﹣x1)x﹣y1y+4x1﹣15=0,
同理,直線HB的方程為(4﹣x2)x﹣y2y+4x2﹣15=0,
,
∴直線AB的方程為
令x=0,可得
,∴t關于y0的函數在[1,+∞)上單調遞增,
∴當y0=1時,tmin=﹣11.
法二:設點H(m2 , m)(m≥1),HM2=m4﹣7m2+16,HA2=m4﹣7m2+15.
以H為圓心,HA為半徑的圓方程為(x﹣m22+(y﹣m)2=m4﹣7m2+15,①
⊙M方程:(x﹣4)2+y2=1.②
①﹣②得:直線AB的方程為(2x﹣m2﹣4)(4﹣m2)﹣(2y﹣m)m=m4﹣7m2+14.(9分)
當x=0時,直線AB在y軸上的截距 (m≥1),
,∴t關于m的函數在[1,+∞)上單調遞增,
∴當m=1時,tmin=﹣11
【解析】(Ⅰ)利用點M到拋物線準線的距離為 ,可得 ,從而可求拋物線C的方程;(Ⅱ)法一:根據當∠AHB的角平分線垂直x軸時,點H(4,2),可得kHE=﹣kHF , 設E(x1 , y1),F(x2 , y2),可得y1+y2=﹣2yH=﹣4,從而可求直線EF的斜率;
法二:求得直線HA的方程為 ,與拋物線方程聯立,求出E,F的坐標,從而可求直線EF的斜率;(Ⅲ)法一:設A(x1 , y1),B(x2 , y2),求出直線HA的方程,直線HB的方程,從而可得直線AB的方程,令x=0,可得 ,再利用導數法,即可求得t的最小值.
法二:求以H為圓心,HA為半徑的圓方程,⊙M方程,兩方程相減,可得直線AB的方程,當x=0時,直線AB在y軸上的截距 (m≥1),再利用導數法,即可求得t的最小值.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減,以及對函數的最大(小)值與導數的理解,了解求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數的個數是(
A.882
B.756
C.750
D.378

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,函數.

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)若無零點,求實數的取值范圍;

(Ⅲ)若有兩個相異零點,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知c>0,設命題p:函數y=cx為減函數.命題q:當x∈[ ,2]時,函數f(x)=x+ 恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求 的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線的參數方程為, 為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線的直角坐標方程,并討論兩曲線公共點的個數;

(2)若,求由兩曲線交點圍成的四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(Ⅰ)當每輛車的月租金定為3600元時,能租出多少輛車?
(Ⅱ)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,滿足“f(x+y)=f(x)f(y)”的單調遞增函數是(
A.f(x)=x
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017河北唐山二!磕硟x器經過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調試,經調試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產成本

檢驗費/

調試費

出廠價

金額

1000

100

200

3000

求每臺儀器能出廠的概率;

求生產一臺儀器所獲得的利潤為1600元的概率注:利潤出廠價生產成本檢驗費調試費;

假設每臺儀器是否合格相互獨立,記為生產兩臺儀器所獲得的利潤,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视