(Ⅰ)f(x)的定義域為(-∞,1)∪(1,+∞).對f(x)求導數得 f '(x)= e
-ax.
(ⅰ)當a=2時, f '(x)= e
-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0,
所以f(x)在(-∞,1), (1,+∞).為增函數.
(ⅱ)當0<a<2時, f '(x)>0, f(x)在(-∞,1), (1,+∞)為增函數.
(ⅲ)當a>2時, 0<<1, 令f '(x)="0" ,解得x
1= - , x
2= .
當x變化時, f '(x)和f(x)的變化情況如下表:
x
| (-∞, -)
| (-,)
| (,1)
| (1,+∞)
|
f '(x)
| +
| -
| +
| +
|
f(x)
| ↗
| ↘
| ↗
| ↗
|
f(x)在(-∞, -), (,1), (1,+∞)為增函數,
f(x)在(-,)為減函數.
(Ⅱ)(ⅰ)當0<a≤2時, 由(Ⅰ)知: 對任意x∈(0,1)恒有f(x)>f(0)=1.
(ⅱ)當a>2時, 取x
0= ∈(0,1),則由(Ⅰ)知 f(x
0)<f(0)=1
(ⅲ)當a≤0時, 對任意x∈(0,1),恒有 >1且e
-ax≥1,得
f(x)= e
-ax≥ >1. 綜上當且僅當a∈(-∞,2]時,對任意x∈(0,1)恒有f(x)>1.