【題目】如圖,等邊三角形ABC的邊長為4,M,N分別為AB,AC的中點,沿MN將△AMN折起,使點A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________.
科目:高中數學 來源: 題型:
【題目】如圖1,在高為2的梯形中,
,
,
,過
、
分別作
,
,垂足分別為
、
。已知
,將梯形
沿
、
同側折起,得空間幾何體
,如圖2。
(1)若,證明:
;
(2)若,證明:
;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前n項和為Sn,點
在直線
上,數列
為等差數列,且
,前9項和為153.
(1)求數列、
的通項公式;
(2)設,數列
的前n項和為
,求使不等式
對一切的
都成立的最大整數k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公差不為零的等差數列{an}中,a3=7,且a2,a4,a9成等比數列.
(1)求數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中國某手機品牌公司生產某款手機的年固定成本為40萬元,每生產1萬部還需另投入16萬元.設公司一年內共生產該款手機萬部并全部銷量完,每萬部的銷售收入為
萬元,且
(1)寫出年利潤萬元關于年產量
(萬部)的函數解析式;
(2)當年產量為多少萬部時,公司在該款手機的生產中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,0),且圓C:x2+y2﹣6x+4y+4=0.
(Ⅰ)當直線過點P且與圓心C的距離為1時,求直線
的方程;
(Ⅱ)設過點P的直線與圓C交于A、B兩點,若|AB|=4,求以線段AB為直徑的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)= (m>0,n>0).
(1) 當m=n=1時,求證:f(x)不是奇函數;
(2) 設f(x)是奇函數,求m與n的值;
(3) 在(2)的條件下,求不等式f(f(x))+f <0的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40 m的半圓形綠化區域(以O 為圓心,AB為直徑),現計劃對其進行改建.在AB的延長線上取點D,OD=80 m,在半圓上選定一點C,改建后的綠化區域由扇形區域AOC和三角形區域COD組成,其面積為S m2.設∠AOC=x rad.
(1)寫出S關于x的函數關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區域面積S取得最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com