精英家教網 > 高中數學 > 題目詳情
函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2;
②x2∈(1,2);  
請你判定是否成立,并說明理由.

【答案】分析:(I)根據已知中兩個函數的圖象,結合二次函數在對稱軸左右兩側單調性相反,而指數函數在定義上單調,可分析出圖中曲線C1、C2分別對應的函數;
(Ⅱ)①由函數解析式可得當x=-1時,兩函數的函數值相等,結合兩個函數在區間(-∞,-1)上的單調性,可得結論;②構造函數,根據函數零點存在定理可判斷其真假.
解答:解:(Ⅰ)由已知中曲線C1有一段從左到右是下降的
故C1,…(3分)
則C2為y=2x-2;   …(5分)
(Ⅱ)結論①成立,理由如下:
∵函數y=2x-2在(-∞,-1]上是增函數,
∴x∈(-∞,-1)時,.…(7分)  
 又∵函數在(-∞,-1]上是減函數,
∴x∈(-∞,-1)時,,
所以當x∈(-∞,-1)時,;…(10分)
結論②成立,理由如下:
構造函數,

∴f(x)在區間(1,2)內有零點.…(14分)
點評:本題考查的知識點是函數的圖象和性質,函數與不等式之間的辯證關系,函數的零點,熟練掌握二次函數及指數函數的圖象和性質是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年浙江省湖州市三縣高三(上)期中數學試卷(文科)(解析版) 題型:解答題

函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2;
②x2∈(1,2);  
請你判定是否成立,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省某三縣高三(上)期中數學試卷(解析版) 題型:解答題

函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2
②x2∈(1,2);  
請你判定是否成立,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省湖州市三縣高三(上)期中數學試卷(文科)(解析版) 題型:解答題

函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2;
②x2∈(1,2);  
請你判定是否成立,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省某三縣高三(上)期中數學試卷(解析版) 題型:解答題

函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2
②x2∈(1,2);  
請你判定是否成立,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省某三縣高三(上)期中數學試卷(文科)(解析版) 題型:解答題

函數y=2x-2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數數值相等,且x1<0<x2<x3,o為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數;
(Ⅱ)現給下列二個結論:
①當x∈(-∞,-1)時,2x-2;
②x2∈(1,2);  
請你判定是否成立,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视