精英家教網 > 高中數學 > 題目詳情
(本題15分)如圖,在四棱錐中,底面,, ,, ,的中點。

(Ⅰ)證明:;
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.
(1)四棱錐中,因底面,故,結合平面,進而證明
(2)根據底面在底面內的射影是,,從而證明。
(3)

試題分析:解法一:
(Ⅰ)證明:在四棱錐中,因底面,平面,

平面
平面,.…………………4分
(Ⅱ)證明:由,,可得
的中點,
由(Ⅰ)知,,且,所以平面
平面,
底面在底面內的射影是,
,綜上得平面. …………………9分

(Ⅲ)過點,垂足為,連結.則(Ⅱ)知,平面在平面內的射影是,則
因此是二面角的平面角.
由已知,得.設
可得

中,,,

中,
所以二面角的正切值為.  ………………15分
解法二:
(Ⅰ)證明:以AB、AD、AP為x、y,z軸建立空間直角坐標系,設AB=a.




 
…………………5分
(Ⅱ)證明:
 

…………………9分
(Ⅲ)設平面PDC的法向量為

又平面APD的法向量是
,所以二面角的正切值是 …………………15分
點評:解決該試題的關鍵是利用空間中的點線面的位置關系,來結合定理加以證明,同時結合向量法求解二面角,需要運算細心點,中檔題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知、為兩條不同的直線,、為兩個不同的平面,則下列推理中正確的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,正方體中,,點的中點,點上,若平面,則________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

正三棱柱中,E為AC中點

(1)求證: 
(2)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分別為PC、PB的中點.

(Ⅰ)求證:PB平面ADMN;
(Ⅱ)求四棱錐P-ADMN的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知:如圖,在四棱錐中,四邊形為正方形,,且中點.

(1)證明://平面;
(2)證明:平面平面
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,
的中點.

(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列結論中正確的是(  )
A.平行于平面內兩條直線的平面,一定平行于這個平面
B.一條直線平行于一個平面內的無數條直線,則這條直線與該平面平行
C.兩個平面分別與第三個平面相交,若交線平行則兩平面平行
D.在兩個平行平面中,一平面內的一條直線必平行于另一個平面

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)在直三棱柱(側棱垂直底面)中,,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视