精英家教網 > 高中數學 > 題目詳情

求函數的值域。

解析試題分析:1)題意分析:求二次函數在指定區間上的值域
2)解題思路:配方,畫圖,找區間
解:配方,得,又,結合圖象,知函數的值域是
考點:二次函數的性質
點評:“配方,畫圖,找區間”適用于解析式為二次函數的題目

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)寫出該函數的單調區間;
(2)若函數恰有3個不同零點,求實數的取值范圍;
(3)若對所有恒成立,求實數n的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.

(1)證明函數是偶函數;
(2)在如圖所示的平面直角坐標系中作出函數的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數的圖象如圖所示,且與軸相切于原點,若函數的極小值為-4.

(1)求的值;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是函數的兩個零點,函數的最小值為,記
(。┰囂角之間的等量關系(不含);
(ⅱ)當且僅當在什么范圍內,函數存在最小值?
(ⅲ)若,試確定的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,且恒成立.
(1)求a、b的值;
(2)若對,不等式恒成立,求實數m的取值范圍.
(3)記,那么當時,是否存在區間),使得函數在區間上的值域恰好為?若存在,請求出區間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數。
(1)當a=1時,求的單調區間。
(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,的兩個極值點為,線段的中點為.
(1) 如果函數為奇函數,求實數的值;當時,求函數圖象的對稱中心;
(2) 如果點在第四象限,求實數的范圍;
(3) 證明:點也在函數的圖象上,且為函數圖象的對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數.
(Ⅰ)函數在區間上是增函數還是減函數?證明你的結論;
(Ⅱ)當時,恒成立,求整數的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视