已知橢圓:
,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線
與橢圓
交于不同的兩點
,且
為銳角(
為坐標原點),求直線
的斜率
的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓
:
相交于
四點,設原點
到四邊形
的一邊距離為
,試求
時
滿足的條件.
(1);(2)
;(3)
.
解析試題分析:(1)利用已知條件找出解出
、
即得;(2)設直線方程,聯立方程組消去
得到關于
的方程,由
求出
的范圍;(3)設直線
的方程為
聯立方程組消去
到關于
的方程,利用
、韋達定理、點到直線的距離公式求解.
試題解析:(1)依題意,,解得
,故橢圓
的方程為
.
(2)如圖,依題意,直線的斜率必存在,
設直線的方程為
,
,
,
聯立方程組,消去
整理得
,
由韋達定理,,
,
,
因為直線與橢圓
相交,則
,
即,解得
或
,
當為銳角時,向量
,則
,
即,解得
,
故當為銳角時,
.
如圖,
依題意,直線的斜率存在,設其方程為
,
,
,由于
,
,即
,又
,
①
聯立方程組,消去
得
,
由韋達定理得,
,代入①得
,
令點到直線
的距離為1,則
,即
,
,
整理得.
考點:橢圓的性質,直線與橢圓的位置關系.
科目:高中數學 來源: 題型:解答題
已知橢圓:
的左、右焦點和短軸的兩個端點構成邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線
與橢圓
相交于
,
兩點.點
,記直線
的斜率分別為
,當
最大時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于
的直線
在y軸的截距為
,且交橢圓與
兩點,
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線
、
與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:
與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知分別是橢圓
的左、右焦點,橢圓的離心率
.
(I)求橢圓的方程;(II)已知直線
與橢圓
有且只有一個公共點
,且與直線
相交于點
.求證:以線段
為直徑的圓恒過定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于4,設點
的軌跡為曲線C,直線過點
且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
拋物線M: 的準線過橢圓N:
的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓方程為
,過右焦點斜率為1的直線到原點的距離為
.
(1)求橢圓方程.
(2)已知為橢圓的左右兩個頂點,
為橢圓在第一象限內的一點,
為過點
且垂直
軸的直線,點
為直線
與直線
的交點,點
為以
為直徑的圓與直線
的一個交點,求證:
三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com