精英家教網 > 高中數學 > 題目詳情

已知函數,其中.
(Ⅰ)若,求的值,并求此時曲線在點處的切線方程;
(Ⅱ)求函數在區間上的最小值.

(Ⅰ)、;(Ⅱ)當;當時,;當時,的最小值為。

解析試題分析:(Ⅰ)先求導,代入0可求得a的值。再將代入原函數求,既得切點坐標,再將代入導函數求,根據導數的幾何意義可知即為切線在點處切線的斜率,根據直線方程的點斜式即可求得切線方程。(Ⅱ)先求導數,及其零點,判斷導數符號變化,即可得原函數增減變化,可得其極值。再求其端點處的函數值。比較極值和端點處函數值最小的一個即為最小值。此題注意分類討論。
試題解析:解:(Ⅰ)已知函數,
所以,
,所以.
,
所以曲線在點處的切線方程為.       5分
(Ⅱ),
,則.
(1)當時,上恒成立,所以函數在區間上單調遞增,所以;
(2)當時,在區間上,,在區間上,,所以函數在區間上單調遞減,在區間上單調遞增,且
上唯一極值點,所以;
(3)當時,在區間上,(僅有當),所以 在區間上單調遞減
所以函數.
綜上所述,當時,函數的最小值為,
時,函數的最小值為                  13分
考點:(1)導數、導數的幾何意義(2)利用導數研究函數性質

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在區間[0,1]上單調遞減,求實數a的取值范圍;
(2)當a=0時,是否存在實數m使不等式2f(x)+4xexmx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若,且對于任意恒成立,試確定實數的取值范圍;
(Ⅱ)設函數,
求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若,且對于任意恒成立,試確定實數的取值范圍;
(Ⅱ)設函數,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求的極值點;
(2)對任意的,記上的最小值為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知P()為函數圖像上一點,O為坐標原點,記直線OP的斜率。
(Ⅰ)求函數的單調區間;
(Ⅱ)設,求函數的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知關于的函數
(Ⅰ)當時,求函數的極值;
(Ⅱ)若函數沒有零點,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中).
(Ⅰ)若的極值點,求的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式
(Ⅲ)若函數在區間上單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數, e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;
(2)若存在x使不等式>成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视